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We normally move seemingly effortlessly, reaching out to pick up a glass, walking down the 

street, or looking at a passing friend.  We do these things without consciously planning the 

movement or exerting a conscious effort.  It is only when the automatic processes that usually 

produce these actions fail that we notice how much effort goes into their production.  For 

instance, when a person has a stroke and becomes paretic in an arm and/or a leg, they suddenly 

find their limb extremely heavy and difficult to manage.  When we move a paralyzed limb for 

someone, it is surprising how much heavier it feels than our own arm or leg.  This is largely 

because we have lost the automatic counter-balancing and control that the body normally 

provides.  These controls are so automatic and unconcious that we are usually completely 

unaware of them. 

When we study the nature of anatomical movements and their control, we also find it 

extremely effortful to capture the movements in a manner that we can analyze and manipulate.  

We discover that there is a great deal of complexity and unexpected subtlety in even the simplest 

natural movements in three-dimensional space.  In this essay, we are going to largely leave aside 

the production of the movement and look at the movement itself.  It may be premature to 

become too engrossed in the control of movements until we understand what it is that is being 

controlled. 

Initially, it may seem that there is very little to the description of movements, but a deeper 

examination raises a great many interesting and challenging problems.  In this essay we will just 

touch on a number of these problems.  To explore the problems in depth would require a level of 

analysis that is not possible in an introductory essay, but it is possible to give something of the 

flavor of their solution with comparatively few concepts and a little computation. 

Let us start with the observation that almost all anatomical movements of the limbs, spine, 

head and eyes occur in joints.  Almost all movements in joints are rotations.  Therefore, if we are 

to understand anatomical movement we must understand rotations.  We will find that rotations 

in three-dimensional space have some unexpected attributes that have profound implications for 

anatomical movements. 
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The nature of movement in a particular joint is contingent upon the geometry of the joint and 

the shapes of the bones that participate in the joint will have considerable influence upon the 

nature of the generated movement.  For instance, the angle between the head of the humerus 

and its shaft converts a spinning movement in the shoulder joint into a swinging movement of 

the arm. 

Movements are produced by the concerted action of muscles that attach to the bones that 

participate in the joint, therefore the geometry of the muscle attachments with respect to the joint 

will be relevant to understanding the movements that occur as a result of muscle actions. 

In what follows we will consider how the geometrical anatomy of a joint and the nature of 

three-dimensional space determine the nature of anatomical movements.  To do this, we need to 

develop some analytic tools that allow the precise description of anatomical movement.  Two of 

the most fundamental tools that will be developed and used extensively are the concepts of 

quaternions and orientation. 

Quaternions are a type of mathematical object that has been known since the mid-1800’s, but 

little studied in recent years.  They have certain attributes that make them ideal for modeling 

rotations. 

Orientation is a concept that is generally understood in an intuitive, qualitative, way, but 

which will be defined in a mathematical construct that allows us to manipulate it quantitatively 

and obtain very precise answers to questions about movement in particular circumstances. 

Quaternions 

Complex numbers 

Sir William Rowan Hamilton discovered quaternions while trying to generalize the concept of 

complex numbers to three dimensions.  It may be remembered, from high school algebra, that 

complex numbers are a combination of a real number, a1, and an imaginary number, bi, such 

that 

 c = a1 + bi . 
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The 1 in the first term is unity in the real number system and i is unity in the imaginary 

numbers. Generally, we do not write the real unity, because it is understood to be there unless 

otherwise indicated. It was necessary to invoke the imaginary numbers to solve equations that 

required the square root of a negative number, such as – 

x
2

+1 = 0

x
2

= !1

x = !1 = i

 

One of the attributes of imaginary numbers is that their multiplication is a convenient way of 

modeling rotations is two dimensions.  To see this one needs to represent complex numbers in a 

different, but equivalent, format.  

First we note that complex numbers can be graphically represented as points in a two-

dimensional plot in which the real number component is represented by a distance along a 

horizontal axis and the imaginary component is represented by a distance along a vertical axis.  

The complex number is the point that lies at the sum of the two distances. 

 

 

 

 

 

In general, the sum of two complex numbers is the sum of their similar components. 
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Note that the point may also be interpreted as the point at the end of a line that extends 

radially from the origin of the coordinate system.  We can write down the conversion formulae 

by inspection of the graph. 
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We call r the magnitude of the complex number and θ its angle. 

At this point we note that the product of two complex numbers is another complex number. 

The product is the algebraic product of the two numbers, remembering that i is the square root 

of minus one. 
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If we do the same product, but using the trigonometric format then the nature of the result is 

much more easily appreciated. 
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We can see that the product of two complex numbers gives a complex number that has a 

magnitude that is the product of their magnitudes and an angle that is the sum of their angles.  If 

one or both of the complex numbers has a magnitude of 1.0, then the multiplication may be 

viewed as a model of rotation in a plane.  In fact, this attribute of complex numbers is used 

frequently in physics to model wave phenomena and oscillations. 
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In the figure the complex number 

! 

c
1
 has a magnitude of 1.0 and an angle of !

1
.  As !

1
 

changes it causes the complex number 

! 

c
3
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1
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2
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magnitude of 

! 

c
1
 is unity, the magnitude of 

! 

c
3
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2
.  Consequently, 

! 

c
1
 

effectively rotates c
2
 to produce 

! 

c
3
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There is nothing in the definition of complex numbers or of the operations that are defined on 

them that will cause the sum or product of two complex numbers to depend upon the order in 

which they appear in the expressions.  This may seem like a trivial observation, but it was a 

major stumbling block in the discovery of quaternions, because it is not true of them. 

Hamilton Extends Complex Numbers to Three Dimensions 

We have taken some time to review the complex numbers, because for many people complex 

numbers are not fresh in their memory or they may not have encountered them before.  

However, some understanding of complex numbers helps in understanding quaternions.  

Hamilton, who was one of the greatest mathematicians of his time, or of any time, spent 30 years 

trying to find a logically consistent way of extending the complex numbers to three dimensions.  

When he did find a way, it was quaternions. 

There were several factors that were unexpected and therefore made the discovery of 

quaternions more difficult.  First, one might expect that since it takes two numbers to represent 

rotations in two dimensions, it would take three to do so in three dimensions.  It actually takes 

four, for reasons that will be elaborated later.  Second, since the order of multiplication is 

irrelevant to the result for complex numbers one might expect that the extension of complex 

number to three dimensions would be the same, but it is not.  The order of multiplication of 

quaternions is highly relevant.  Except in very special circumstances, the result of multiplying two 

quaternions is different if the order is reversed.  At the time that Hamilton discovered 

quaternions there was not any other number system that had that property.  After he established 

that commutativity of multiplication was not a necessity of valid number systems, there was an 

explosion of creation of number systems that lacked one or more of the properties of real or 

complex numbers.  It was the beginning of what is now called modern algebra. 
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As disconcerting as the lack of commutativity of multiplication of quaternions was, it turned 

out to also be a property of rotations in three dimensions. It is easily demonstrated that for 

sequences of two rotations that do not occur in the same plane, reversing the order of the 

rotations produces quite different outcomes.  This may be seen by taking a book and laying it on 

a table front up and appropriately oriented for reading.  Now rotate it through 90° so that it is 

lying on its spine by rotating it about its long axis and then rotate it through 90° again, but about 

an axis that extends perpendicular to the table so that the bottom edge swings to the left.  The 

book is now facing away from you, perpendicular to the table resting on its spine.  Now return 

the book to its original position.  This time first rotate it 90° about a vertical axis, perpendicular 

to the table, so that the bottom swings to the left, then 90° about the axis that extends away from 

your body.  It is now standing on its bottom edge and facing to the left.  The order of the 

rotations was reversed and the end positions are clearly different.  The manner in which 

rotations in three dimensions interact is exactly the way in which quaternions combine when 

multiplied, therefore quaternions are an excellent means of modeling rotations in space. 

The Definition of Quaternions 

A quaternion is often called a hypercomplex number because it is composed of four numbers.  

In parallel with complex numbers a quaternion may be expressed as the sum of four different 

components. 

Q = a1 + bi + cj + dk  

As with complex numbers the 1 is unity in the real numbers and the i, j, and k are unity in three 

different imaginary number systems.  As with complex numbers we generally do not write the 

real unity. 

The addition of quaternions is like complex numbers in that the coefficients of like 

components are added together. 
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The multiplication of quaternions is like algebraic multiplication with one important 

exception, one must keep track of the order of the products of the components.  First let us define 

the products of the components. 

i! j = " j !i( ) = k j !k = " k! j( ) = i k! i = " i !k( ) = j

i! i = j! j = k !k = "1

1 ! i = i 1 ! j = j 1!k = k

 

From these relations it is clear why we say that there are three different imaginary numbers.  

Each is the !1 , but the product of any two is the third.  To remember the relations in the first 

line the following diagram may be helpful.  If one multiplies any two components in the 

clockwise order around the ring then the result is the third element.  If they are multiplied in 

counter-clockwise order then the result is the negative of the third. 

 
 
 
 

 

 

Now if we consider the product of two quaternions.  Here we encounter one of the most 

difficult aspects of quaternion multiplication by hand.  One must be very careful to retain the 

order of the products as one does the multiplication.  Now that it is possible to write computer 

programs with subroutines to do quaternion multiplication it is not as much of a problem as it 

used to be. 
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It may be proven that the product or sum of any two quaternions is another quaternion.  

Quaternions are also closed under subtraction and division. 

i 

j k 
+ −  
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The Trigonometric  Form of a Quaternion 

As with the complex numbers, there is a way to write a quaternion in a trigonometric format, 

which is often more convenient for analysis or understanding what is happening in a particular 

situation.  We start with the magnitude of the quaternion, often called its tensor.  The tensor of a 

quaternion is the square root of the sum of the squares of it components. 

 

T = a
2
+ b

2
+ c

2
+ d

2

 

We can now express the quaternion as a real number, T, times a quaternion of magnitude 

1.0, which will be called a unit quaternion.  We note that the quaternion is made up of two types 

of entities, the real number, a, and a vector, v = bi+cj+dk.  If we divide the quaternion by its 

magnitude we obtain a unit quaternion, 

! 

Q , that can be written as a trigonometric expression. 

Q = a + bi + cj + dk

= T!Q = T! a + b i + c j + d k( )

= T a + v( ) = T cos" + sin "! v ( ) ,   where

cos" =
a

a
2

+ b
2
+ c

2
+ d

2
  ,   sin" =

b
2 + c

2 + d
2

a
2

+ b
2
+ c

2
+ d

2
,  and v =

bi + cj+ dk

b
2
+ c

2
+ d

2

 

The unit vector v  has a magnitude of 1.0.  The vector v will be called the vector of the 

quaternion.  The angle !  will be called the angle of the quaternion. 

Now we are at the point that we can connect the quaternion up with rotations in three-

dimensional space.  Before we start, it should be noted that though we started out looking for an 

extrapolation of the complex numbers to three dimensions in order to extend the concept of 

rotations, the interpretation is different for quaternions. 

Rotations and Quaternions 

We start with two arbitrary vectors in three-dimensional space.  We wish to determine the 

ratio of the two vectors.  In a sense we are dividing one vector by the other, an operation that has 

no meaning in standard vector analysis.  First, we can translate the vectors so that they arise from 

a common point.  This is not essential, since the vector’s locations are irrelevant to their ratio, 

but it helps to visualize the process if they are so aligned.  We now note that the two vectors 
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define a plane that contains both.  Within that plane, we can visualize rotating one vector 

through a particular angle, ! , to bring it into alignment with the other.  Now the two vectors 

differ only in that one is a scalar multiple of the other.  If the scaling factor is T and the unit 

vector, v, is perpendicular to the plane of the two vectors and a rotation through an angle !  

about that vector carries the first vector, v
1
, into the second vector, v

2
 , then the ratio of the 

second vector to the first is the quaternion Q . 

v
2

v
1

=Q = T cos! + sin! " v( ) # v
2
= Q" v

1  

 

 

 

 

 

 

There is a caution that should be given at this time.  As noted above, the order of 

multiplication is critical, therefore, it is relevant whether the ratio is written as 

v
2
! v

1

"1
= Q

2 1
   or   v

1

"1
! v

2
= Q

1 2 . 

You can choose either way, but must be consistent from then on. 

If we call the two vectors !  and ! , then 

! " = ! #"
$1

= q % & q = "
$1
# !  , 

but 
! " # q = $  . 

This is because the order of multiplication is relevant in quaternion analysis.  In the expression  
! " # q = ! "!

$1
" %  

the alpha terms cancel, but they do not in the expression 

v 
v1 

v2 

!  
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! q "# = #
$1
"% "#  . 

A great deal more care and precision are required in quaternion analysis than with vector 

analysis, but the quaternion analysis is considerably more powerful.  We will generally use the 

q = !"#
$1  form of the rotation quaternion. 

 

A Simple Example: 

Let !  be i and !  be j, then !"1 is ! i .  If we go through the calculation as above – 

q = ! "#$1 = j" $i = k

% q = #$1 " ! = $i" j = $k
 

and thus 

q !" = k ! i = j = #

" ! $ q = i! %k = j = # .  

Therefore, the calculation works equally well with either interpretation of !
"

, but one has to be 

consistent and careful to observe the correct ordering of the products throughout. 

Euler’s Equation 

The arguments introduced in the previous section show that quaternions may be used to 

model rotations of vectors in a plane, however, most rotations do not occur in a plane.  Usually 

the rotated vector sweeps out a cone in space.  These types of rotations are modeled by a more 

complicated expression, but still using quaternions. 
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Let the rotating vector be called S and suppose that it is being swept in a conical path about the 

unit vector v through an angle 2! .  We write out the rotation quaternion that has the 

quaternion angle !  and the unit vector v as follows –  

R = cos! + sin! " v ;

v =
R

R
; where R  is the magnitude of R .  

It can be shown that the vector ! S , which represents the rotated S vector, is given by the 

expression  

! S = R "S "R
#1

 
which is known as Euler’s equation. 

The inverse of a quaternion is given by the definition -  

R
!1
=
1

R
=
1

T
2
" cos# ! sin#" v[ ]   . 

Since we are using unit quaternions for rotations the tensor is unity, therefore the tensor of its 

inverse is also unity.  Note that the angle of the rotation quaternion is half of the angular 

excursion that the rotating vector experiences. 

Euler’s equation is central to all that follows.  Virtually all rotations of moving objects are 

conical rotations, therefore may be modeled as quaternion multiplication according to Euler’s 

equation.  If the rotation occurs entirely in a single plane one may use simple quaternion 

multiplication.  If it is conical, then one must use Euler’s equation. 

Orientation 

Quaternions give us a conceptual tool to compute the consequences of rotations, but a little 

experimentation will show that they are not sufficient.  The other tool we need is a mechanism 

for coding orientation.  It is obvious that anatomical structures have a location and an extension 

in space.  If one is considering the movements of the hand, it clearly moves from one location to 

another and it occupies a finite volume, which can be expressed as its length, width, thickness or 

some combination of those.  In addition to these properties it is orientable, meaning that it has a 

top and bottom, a medial and a lateral aspect, and distal and proximal parts.  Generally, it is not 
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sufficient to place your hand in a particular location, you must also have it properly oriented if 

you wish to hold or catch an object or make a gesture.  What we need is a way of expressing the 

orientation in a way that allows us to manipulate it mathematically.  If we are able to express 

orientation in a form that can be quantitatively manipulated, then it will be possible to calculate 

the changes in orientation that occur when an anatomical object is rotated. 

The way that orientation will be codified is to determine three non-coplanar vectors that align 

with certain aspects of the anatomical object.  For instance, in specifying the orientation of a 

hand, one might choose a vector that points in the direction of the middle finger, one 

perpendicular to the first in the direction of the thumb, and a third perpendicular to the first two 

vectors and extending in the direction of the hand’s dorsal surface.  While there is no reason that 

the three vectors need to be mutually perpendicular, it is often convenient to select them that 

way.  It makes it easier to visualize the transformations that occur with movements. 

Framed Vectors 

We will call such an array of vectors a frame of reference, or often just a frame.  Ultimately 

we will combine the three vectors in the frame of reference with a vector that indicates the 

location of an anatomical object and a vector that indicates its extension and call the whole array 

of five vectors a framed vector.  Note that while we will consider the frame of reference as a 

component of a framed vector, it is not attached to the other two vectors. 
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The Components of a Framed Vector 
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When an orientable structure rotates all the components of the frame of reference rotate in 

the same manner, so that we can multiply each component by the same rotation quaternion, 

using Euler’s Formula.  For every rotation there will be changes in at least two of the frame’s 

components and usually in all three. 

Variations on the Concept of a Framed Vector 

While we define a framed vector to have a location vector, an extension vector, and a frame 

of reference that is a set of three non-coplanar vectors, there is no reason that one can not work 

with variations on that basic structure.  In some instances it may be expeditious to have more 

than one extension vector.  In many situations we are really concerned only with the changes in 

orientation and will therefore work only with the frame of reference.  Many times we will have 

one of the frame of reference vectors aligned with the extension vector, therefore it may be 

redundant to calculate the same transformation twice.  Frequently the location of the orientable 

object is taken to be the origin of the coordinate system, therefore the location vector is null. 

When dealing with complex anatomical objects one may utilize arrays of framed vectors that 

express structure of various components of the object.  For instance to describe the movements of 

a spinal vertebra one might to have framed vectors for the superior and inferior surfaces of the 

vertebral body, each facet joint and the vertebral spine.  Such an array of framed vectors will be 

called a box, because it contains the modeled object in the sense of defining a space that is 

congruent with the features of concern.  In this essay, we will deal only with single framed vectors 

or frames of reference. 

Changes in the Components of Framed Vectors with Movements 

There are three basic types of movements that may occur; translation, rotation, and rescaling.  

Translation is a straight line movement during which the object does not revolve in any 

direction.  Rotation is a movement in which the object and its parts move about an axis of 

rotation.  Rescaling is a change in the size of the object so that it expands or contracts in one or 

more directions. 

  Frames of reference are not changed by translation or changing magnitude, but they are 

always changed by finite rotations.  An object’s extension is not changed by translation, but it is 
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always changed by rescaling and usually by rotation.  The location of the object may or may not 

be changed by rescaling or rotation, but is always changed by finite translations.  It usually would 

not be changed by rescaling.  It would the stay the same if the rotation occurred about the head 

of the location vector, but not otherwise.  A single movement may be a combination of any pair 

of movement types or all three combined. 

Types of Rotation 

Rotation is conveniently differentiated into several types, though the different types are really just 

different parts of a continuous spectrum of rotations.  If the rotation occurs about the axis of a 

vector, then we say that the vector experiences a pure spin about that vector.  The vector is not 

changed by a pure spin.  If the axis of rotation is perpendicular to the direction of a vector, then 

the vector is said to experience a pure swing about that vector.  The vector stays in a plane that is 

perpendicular to the axis of rotation.    Such transformations may be expressed by quaternion 

multiplication.  A rotation that occurs about an axis that lies at any angle other than 0° or 90° to 

the direction of a vector will cause the vector to experience a conical rotation, often simply 

referred to as a swing.  Conical rotations may be expressed as Euler products.  Using Euler’s 

formula will always give the correct transformation of a rotated vector, therefore, if there is any 

doubt about the relative directions of the rotation quaternion’s vector and the direction of the 

rotating vector it is prudent to use Euler’s formula.  

An Example 

 

 

 

 

 

Up to this point the descriptions have been fairly qualitative.  Let us now consider an example 

in which we apply these concepts to a problem.  The situation is illustrated above.  There is a 
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cylinder that lies with its long axis along the i axis.  Sticking out from that cylinder is a small peg 

that is aligned with the j axis.  Initially, we will consider the case where the cylinder rotates about 

an axis parallel with its long axis and through the center of the cylinder, R
1
 (R1 in the diagram).  

The location vector is set to null for the present calculation, meaning that we assume the origin 

of the system lies along the axis of rotation.  The extension vector, E , is taken to be a vector that 

lies parallel with the long axis of the cylinder with a length equal to the length of the cylinder.  

An orientation frame is chosen so that the first component (F1 ) is parallel with the extension 

vector, or the long axis of the cylinder.  The second component (F2 ) is aligned with the long axis 

of the peg and the third component (F3 ) is taken to be perpendicular to the other two and 

directed so that if the fingers of your right hand sweep from the first to the second component 

then your thumb points in the direction of the third component.  This is called a right-handed 

coordinate system.  As is usual, it is assumed that all the orientation frame’s vector are unit 

vectors.  If we write all this out in a matrix of vectors then the framed vector, F , would be as 

follows. 
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The rotation quaternion is given by the expression 

R
1
= cos

!

2
+ i" sin

!

2
,  where ! is the angular excursion  

Consequently, after rotation through the angle ! , the framed vector, ! F , is given by the 

following expression. 
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Looking at the expression, it is clear that the rotation did not change the vectors that were 

parallel with the axis of rotation, those in the first column.  The vectors in the perpendicular 

directions were transformed in the manner that one would expect if they rotated though the 

angle !  about the i axis.  If we plug a 90° rotation in the expression, then the F2 axis is directed 

in the direction of the k axis and the F3 axis is directed in the direction of the negative j axis. 

These results are basically what we would expect if we visualize the rotation occurring as 

described.  With some thought we could have written down the results without performing the 

calculations.  However, the situation is a great deal more difficult if we have to determine the 

result of rotation about an axis that is oblique to the long axis of the cylinder.  It is in these more 

difficult situations that the benefit of the quaternion approach becomes evident.  In the following 

section we will perform the calculation using quaternions and orientation expressed in a framed 

vector. 

A More Difficult Example 

We start with the axis of rotation, which is a unit vector in the direction of i + j , and the 

angular excursion is ! , therefore the angle used in the Euler formula is !
2

.  The framed vector 

is the same as in the previous example. 
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 The calculation is not presented here, but it is straightforward and can be easily carried out by 

following the standard rules of quaternion multiplication. 
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At this point we can plug in a value of ! = "  radians =180°  and the framed vector is given by 

the following evaluation. 
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If you are good at visualization, you will be able to see that this is the correct framed vector.  

Otherwise, the quaternion multiplication is a much easier way to determine the consequences of 

such a rotation. 

If we ask what the framed vector would be for a 90° rotation, then even good visualization 

skills are severely challenged. 
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For any other angle of rotation, it would be virtually impossible to write down the rotated 

framed vector without computation.  The value of this approach is in those situations where the 

angle is not a convenient fraction of a circle.  In real problems, the rotations are almost never a 

convenient angular excursion.   

Derivation of the Rotation Quaternion Given the Initial and Final Frames of Reference 

Up to this point we have started with the initial orientation and the rotation quaternion and 

have computed the final orientation.  Another situation that frequently arises is that we have 

obtained the initial and final orientations and we need to determine a single rotation that will 

transform the initial fame of reference into the final frame of reference.  We will now consider 

how that is accomplished. 
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First let us set up the problem by actually working it forward and then trying to work it 

backwards.  Let the frame of reference be aligned with the axes of a right-handed coordinate 

system. 
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Let the rotation be about the direction of v =
i + j + k

3
, so the rotation quaternion is given by 

the quaternion R .  Its half angle form is given by r. 

R = cos! + sin! " v

r = cos
!

2
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!

2
" v = cos# + sin#" v  

We can compute the transformation of the frame from the initial orientation to the final 

orientation as follows. 
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The array of solutions looks imposing when written out, but it is just three values that are shifted 

one position to the right in each successive row. 

A little thought will lead one to the conclusion that a rotation of 120° will transform the frame 

from being aligned with the coordinate axes to being aligned again but shifted one axis clockwise. 
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Substituting 120° for !  in the expression confirms that outcome. 

We now know the actual rotation quaternion for the transformation of the orientation’s frame 

of reference.  To work backwards from the two frames of reference to the rotation quaternion 

involves finding two quaternion multiplication’s that when combined will give the correct 

rotation quaternion.  We start by finding the quaternion that will transform the first axis of the 

orientation frame before rotation into the same axis after rotation, F
1
 into ! F 

1
.  That is 

accomplished by taking the ratio of the final to the initial axes. 

R
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= ! F 1 "F1

#1
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We could pick any axis to calculate the first ratio. 

Once we have the rotation quaternion, we need to calculate an intermediate frame of 

reference by multiplying the other two axes by the same quaternion, but whereas R
S W

 will 

transform F
1
 into ! F 

1
 by quaternion multiplication we need to use Euler’s formula to transform 

the other two axes. 
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We note that the second and third frame vectors in the intermediate frame are not the same 

as in the final frame, therefore we divide the final F
2
 by the intermediate 

! 

" F 
1
 to obtain the 

quaternion that will rotate the frame of reference from the intermediate orientation to the final 

orientation. 

R
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=
! F 2
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= ! F 2 "F2:I
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= k " i = j
 

Then we have to multiply the intermediate frame by this second rotation quaternion to obtain 

the final frame of reference. 
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Note that the movement spins the frame of reference about the axis that we obtained in the first 

calculation.  This will always be the case. 

Finally, the rotation quaternion that performs the same transformation as these two rotation 

quaternions taken successively is the product of the two quaternions. 
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If we look at the scalar term, the real term, then we can determine the angle of the quaternion. 

cos! =
1

2
" ! =

#

3
= 60°  

Since we are using Euler’s formula we have to double the angle of excursion to obtain the 

angle of the quaternion, therefore the angle of the quaternion is 120° and the unit vector of the 

quaternion is obtained as follows. 
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R =
1

2
+
1

2
! i+ j + k( ) = cos" + sin" !v

=
1

2
+

3

2
*
i + j + k

3
= cos

#

3
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3
! v

v =
i + j + k

3

 

We have solved a particular case in order to demonstrate that the method works and so that it 

is easier to see how it works, but the same approach will always yield a solution if it is possible to 

find one. 

Note that we could chose any two frame axes to obtain the result.  In some instances it might 

be more convenient to choose a different set.  The intermediate results will be different, but the 

product will always be the same for any particular situation. 

In practice, this ability to determine the rotation that would bring about a particular 

transformation of the orientation is often one of the most useful tools of quaternion analysis of 

systems of orientable objects.  It is possible to show that the two intermediate rotation vectors 

that are ratios of the frame’s axes are quantitative expressions of the swing and spin that turn up 

frequently is discussions of concurrent rotations.  They were labeled in the derivation that we just 

completed by the subscripts R
S W

 and R
S P

 , for swing and spin, respectively.  We will not address 

those points here, but they are treated elsewhere is considerable detail 

Summation 

I have tried to introduce the basic concepts that lie at the foundations of the quaternion 

analysis of the movements of orientable objects.  There are remarkably few concepts required, 

but there is a subtlety about them that often leads to very elegant results with comparatively little 

manipulation. .  Very little more is required than what has been presented here.  Most of the 

analysis lies in applying these concepts to specific problems and carrying out the calculations for 

a variety of situations.  The basic concepts are straightforward and intuitive, they readily yield to 

quantitative analysis, and make it possible to ask very detailed questions about an anatomical 

system and to obtain very precise results.  At the same time the symbolism is such that one can 

reason at a fairly high level of abstraction and still obtain specific results. 
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It should be stressed that this essay only skims the surface of the many facets of quaternion 

analysis of moving systems.  There are many interesting problems in this area and a fair number 

have already been analyzed to a greater or lesser extent.  Many of these are treated in other 

essays. 

It will be apparent to anyone who tries to carry out the calculations that were not written out 

in full that there is a fair amount of drudgery is doing the actual calculations and a great deal of 

care must be taken to maintain the order of multiplication.  However, this is also a drawback of 

methods based on matrices.  It is probably implicit in any adequate system for quantitative 

analysis for such systems.  When dealing with matrices one normally uses a computer to handle 

the actual calculations.  Similarly, if one does a great many calculations with quaternions it is 

prudent to avail oneself of a computer program that allows the automatic computation of the 

quaternion products.  Such programs are easily written. 


