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PREFACE.

ReADERs of the Life of Sir William Rowan Hamilton will
recollect that he undertook the publication of a book on
quaternions to serve as an introduction to his great volume
of Lectures. This Manual of Quaternions was intended to
occupy about 400 pages, but while the printing slowly pro-
gressed it grew to such a size that it came to be regarded
by its author as a “book of reference” rather than as a
text-book, and the title was accordingly changed to The
Elements of Quaternions. By a curious series of events
one of Hamilton’s successors at the Observatory of Trinity
College has felt himself obliged to endeavour to carry out to
the best of his ability Hamilton’s original intention. And on
the centenary of Hamilton’s birth a Manual of Quaternions is
offered to the mathematical world.

Last year I was called upon by the Board of Trinity College
to assist in the examination for Fellowship. I had long ago
recognized that another work on quaternions was required,
and this want was forcibly brought home to me by my new
duties. A mathematician, whose time is limited, is frightened
at the magnitude of Hamilton’s bulky tomes, although a closer
acquaintance with the Elements would reveal the admirable
lucidity and the logical completeness of that wonderful book,
and although the Lectures have a charm all their own. The
student wants to attain, by the shortest and simplest route, to
a working knowledge of the calculus; he cannot be expected
to undertake the study of quaternions in the hope of being
rewarded by the beauty of the ideas and by the elegance of
the analysis. And for his sake, though with reluctance I
must confess, I have abandoned Hamilton’s methods of
establishing the laws of quaternions.
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By a brilliant flash of genius Hamilton extended to vectors
Euclid’s conception of ratio. A quaternion is the mutual
relation of two directed magnitudes with respect to quantity
and direction as a ratio is the mutual relation of two
undirected magnitudes with respect to quantity. From this
enlarged view of a ratio, the calculus of quaternions is deve-
loped in the Elements. But the way is long and winding,
and after much labour, I found I could not greatly shorten it or
make it much less indirect. I therefore adopted another plan.

The two cardinal functions of two vectors are S«B and
VaB. These functions may be defined by the statements
that —SaB is the product of the length of one vector into the
projection of the other upon it, and that Va@ is the vector
which is perpendicular to « and to B, and which contains
as many units of length as there are units of area in the
parallelogram determined by « and 8. Both these functions
enjoy some of the properties of an algebraic product. They
are distributive with respect to each of the vectors.

The product of the vector « into B may be defined to be

the sum of these functions,
a3=8SaB+ Vap.
This is a quaternion—the sum of a scalar and a vector. A
product of a pair of vectors is distributive but not commuta-
tive. It is now necessary to define the product of a quaternion
(q) into a vector (y), and we say that it is the sum of the
product of the scalar (Sq) into y and the product of the
vector (Vq) into +y, or that

q.y=Sq.y+Vq.v.

From these principles it follows almost immediately that quater-
nion multiplication is associative as well as distributive.

Division is seen to be deducible from multiplication, and
on p. 12 we arrive at the important result that every function
of quaternions formed by ordinary algebraic processes is a
quaternion, scalars and vectors being considered to be special
cases.

What we may call the grammar of the subject may be said
to terminate on p. 20, the laws of combination of quaternions
having been established, the five special symbols S, V, K, T and U
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having been defined and their chief properties explained, various
constructions for products and quotients having been made, and
the non-commutative property of multiplication having been
illustrated by conical rotations and otherwise.

In the succeeding chapters, I have not scrupled to introduce,
either in the articles in small type or in the worked examples
in small type, illustrations of the applications of quaternions
to subjects that can hardly be supposed to be familiar to the
beginner in mathematics. It is suggested in the table of con-
tents that these more difficult portions should be omitted by
a beginner at first reading. The book is, however, primarily
intended for those who commence the study of quaternions
with a fair knowledge of other branches of mathematics; in
other words, it is written for the majority of those at present
likely to read quaternions because, as yet, the subject is not
generally taught in elementary classes. On the other hand,
I have abstained from printing examples of an artificial nature,
and I have avoided unnecessary difficulties.

Although this book may be regarded as introductory to the
works of Hamilton, it may also to some extent be considered
as supplementing them. Many of the results contained in it
have appeared only in the publications of learmed societies,
and many others are believed to be novel. It is possible,
therefore, that this volume may be found to have some points
of interest for the advanced student of quaternions. He will
find, for example, that quaternions lend themselves to the
treatment of projective geometry quite as readily as to investi-
gations in mathematical physies and in metrical geometry.

By means of a somewhat elaborate table of contents, modelled
on those prefixed by Hamilton to his Lectures and Elements,
and by the aid of a full index and numerous cross references,
I trust that the contents of this book will be found to be fairly
accessible to the casual reader as well as to the systematic
student. It must be remembered, however, that the objects of
a work of this nature are to introduce a subject of the highest
educational value, and to develop a powerful and comprehen-
sive calculus. Such ends can be attained only by illustration
and by suggestion, and it is not easy to tabulate methods of
investigation.
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It would be impossible to overestimate what I owe to
Hamilton’s Lectures on Quaternions (Dublin, 1853) and to
his Elements of Quaternions (London, 1866, 2nd edition, in
two volumes, with notes and appendices by C. J. Joly, London,
1899, 1901). The admirable Elementary Treatise on Qua-
ternions (3rd edition, Cambridge, 1890), by the late Professor
P. G. Tait—who has done so much for quaternions by his
classical applications of Hamilton’s operator V—has also been
very useful. Other writers to whom I am indebted are referred
to in the text.* I am glad to have this opportunity of offering
my thanks to my respected friend, Benjamin Williamson,
Esq., F.R.S., Senior Fellow of Trinity College, Dublin, for his
great kindness in assisting me with a considerable portion of
the proofs. I am also indebted to him for the uninterrupted
encouragement he has given me, alike privately and in his
official capacity as a member of the governing body of Trinity
College, in my attempts to render Hamilton’s work more
widely known.

CHARLES JASPER JOLY.

THE OBSERVATORY,
Duwnsing, Co. DusLixn, lst Jan., 1905.

*The Bibliography by Dr. Macfarlane, published by the International Association
for the promotion of the Study of Quaternions and Allied Systems of Mathematics
(Dublin, 1904), renders unnecessary any detailed list of works on quaternions.
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CHAPTER L
THE ADDITION AND SUBTRACTION OF VECTORS.*

ArT. 1. A right line, AB, considered as having not only
length but also direction, is said to be a vector. The direction
of the vector AB is that of the point B as viewed from A, and
the vector BA is the opposite of AB, being equal to it in length
but having the opposite direction. All equal right lines AB,
A'B/, ete., which have the same direction are equal vectors.}

ART. 2. The sum obtained by adding the vector BC to AB is
denoted by BC+ AB, and is defined to be the vector AC. Thus
symbolically (fig. 1),

BC+AB=AC.

C D C

A 3 A B
Fie. 1. Fia. 2.

Completing the parallelogram, ABCD, the definition of addition
gives likewise the equation (fig. 2)

DCH+AD=AC
or AB+BC=AC,

because the vectors DC and AD are respectively equal to AB and
BC. Thus the sum of two vectors is independent of the order

* Following the example of Hamilton in his Lectures on Quaternions and in his
Elements of Quaternions, the table of contents of this volume is amplified into an
analysis or commentary to which it may be useful occasionally to refer.

+ It seems to be an unnecessary complication to print a bar (3B} over the letters
which represent a vector AB. Hamilton sometimes uses the notation AB to re-
present the length of the vector AB.

Q. A



2 ADDITION OF VECTORS. [craP. 1.

in which they are added, or the addition of two vectors is a
commutative operation.*

ART. 3. The sum obtained by adding any vector CD+ to the
sum of AB and BC (fig. 3), is the sum of CD and AC, or the
vector AD. But AD is likewise the sum of AB and BD, that is,
the sum of AB and the sum of BC and CD. And by completing

Fi6. 3.

the parallelogram of which BD is a diagonal and BC and CD are
sides, it appears that AD is also the sum of BC and the sum of
AB and CD. In other words, the same vector is obtained by
adding any one of the three vectors, AB, BC and CD, to the sum
of the other two. This vector sum AD is consequently inde-
pendent of the order in which the component vectors are taken
and of the mode in which they are grouped.

The same process applies in general, and the addition of
vectors is an associative and a commutative operation. Tt is
associative inasmuch as the vectors may be grouped into partial
sums in any way; and it is commutative because the order in
which the vectors are taken is immaterial.

ART. 4. Any number of vectors being arranged as the succes-
sive sides AB, BC, ete., of a polygon, their sum is the vector AD
drawn from the initial point of the first to the terminal point of
the last. If the polygon happens to be closed, the sum is a
vector of zero length, or simply zero. Thus, in particular,

AB4+BA=0, AB+BC+CA=0, AB4+BC+CD+DA=0.

ART. 5. It is natural, in accordance with the equations just
given, to introduce the sign —, and to write

BA= —AB,

#In certain systems of vector analysis, the word vector is used in a different
sense, and & vector cannot be determined without reference to its position. The
commutative law then ceases to be obeyed. An example of non-commutative
addition will be found in Art. 21, p. 16.

+In every case, unless the contrary is expressed or implied, the vectors with
which we deal are not necessarily parallel to a plane.



ART. 6.] .SCALAR COEFFICIENTS. 3

or to agree that the sign — prefixed to a vector shall convert it
into its opposite (Art. 1). Hence the subtraction of one vector
from another may be regarded as equivalent to the addition of
the opposite of the first vector to the second. Subtraction of
vectors is thus included in addition.

As we can now interpret — AB, it is convenient to use a single
symbol to denote a vector. We shall follow Hamilton’s admir-
able notation, and shall employ the small letters of the Greek
alphabet to represent vectors, using, as a general rule, the earlier
letters a, 83, y, ete., for given or constant vectors, and p or ¢ for
variable vectors.

ART. 6. The sum of two equal vectors is a vector of the same
direction and of twice the length. It is natural to write, as in

algebra, 2a=a+a, 3a=a+a+ta, ete,
and generally, at least when = is an integer,

B=mna, ;
Aif the vectors B and a have the same direction while the length
of B is n times that of a. This result may be extended to the
case in which » is fractional or incommensurable by a process

identical with similar extensions in elementary algebra. The
last article affords the interpretation to be adopted when n is

negative ; and when = is complex (n'+a/ —1n"), the difficulties
of interpretation are of the same nature as in ordinary algebra,
and need not be discussed here.

Further, it is natural to say that the coeflicient n results from
the division of the vector 8 by the parallel vector a, and we
shall therefore write

B

n=L, or n=8+a, or n=L0:aq,
a

as a consequence of S8=mna  Also, conversely, whenever the
quotient of two vectors is an algebraic quantity or a scalar*
we infer that the vectors are parallel, and that they have the
same or opposite directions according as that scalar is positive or
negative.

Again, if » is an integer and if « and B are any two vectors,
the laws of addition give

n(a+B)=na+np,

and by a process of induction this relation may be extended to

* The word ‘scalar,” synonymous with algebraic quantity, was employed by
Hamilton because such a quantity may be conceived to be constructed by *‘ com-
parison of positions upon one common scale (or axis).” FElements, Art. 17.



4 ADDITION OF VECTORS, [cuaP. 1.

the case in which n is fractional or incommensurable. More
generally, if @, y and 2 are any scalars,

z(za+yB)=zza+2yp,
so that the multiplication of vectors by scalars is a distributive
operation.

ART. 7. In the calculus of quaternions a uwit of length is
selected to which the lengths of all vectors are referred. The
tensor of a vector a is the number of units contained in its
length, and is denoted by the symbol Ta. Thus the tensor is a

positive or “signless ” number, at least when the vector is real,*
and in particular, Ta=T(=—a),

In general, if n is a real scalar,

Tna=nTa if n>0; Tna=—nTa if n<0.

Hamilton also uses the notation Ua to denote a vector of unit
length having the same direction as a, and he calls Ua the versor
of the vector a. Since the direction of —a is opposite to that of q,

Ua=<=U(~a),
and, more generally,

Una=TUa if n>0; Una=<Ua if 2<0.
Also, by Art. 6, a=Ta.Uq,

or a vector is the product of its tensor and its versor.

/c
B Y D

A
‘
1
i
]
1
\
1
[l
L
]
1
1

o

Fia. 4.

ArT. 8. An arbitrary vector OD (or §) may be resolved in one
way into a sum of vectors parallel to three given and non-
coplanar vectors OA, OB and OC (or @, B and ).

* For imaginary vectors see Art. 22, p. 20.



ART. 8.] EXAMPLES. 5

Through D draw three planes parallel to the planes BOC, COA
and AOB, meeting the lines OA, OB and OC in the points A", B, C'.
Then it is evident from the figure that

OD=0A’'+0B'4-0C"; or OD=x0A+y0B-20C;
or §=zatyB+zy,
if the scalars z, ¥ and z are the quotients of parallel vectors,
2=0A":0A, y=0B":0B, z=0C":0C;
and it is further evident that this construction is unique.
It may happen that some or all of these three scalars are

negative, or some may be zero, but these cases can present no
difficulty.

Ex. 1. Find the vector oc to a point which divides a» in a given ratio.
[Here Ac_cB_Ac+cB_f8-a_vy-a or y=la+mﬂ-

=T 05 m  I+m m° {+m

Bx. 2. If weights 7, m and n are placed at A, B and c, find their
centre of mass.

[The extremity of the vector (la+mfB+mny):(l+m+mn), supposed to be
coinitial with a, 8 and v.]

Ex. 3. Prove that the mean centre of a tetrahedron is (2) the intersection
of bisectors of opposite edges; (b) the intersection of lines joining the
vertices to the mean points of the opposite faces. Show that the former
lines bisect one another, and that the latter quadrisect one another.

Ex. 4. Prove that the vectors +a+ 3+ when drawn through a common
point terminate at the vertices of a parallelepiped.

Ex. 5. Discuss the arrangement of the extremities of the sixteen coinitial
vectors +a+ 3+ +8. Consider the points with reference to the extremities
of +a, etc, and with reference to one of the points, the extremity of
a+ 3+ +86 for example.

Ex. 6. Prove that four arbitrary vectors are connected by a linear
relation, aa+bB+cy+ds=0.
Ex. 7. If three vectors are linearly connected, or if

ao+bB3+cy=0,
they are coplanar.

Ex. 8. If aoa+boB4coc=0, a+b+c=0, the points 4, B, ¢ are collinear.

Ex. 9. If aoa+boB+coc+don=0, a+b+c+d=0, the points 4, B, ¢, D
are coplanar.



CHAPTER IL

MULTIPLICATION AND DIVISION OF VECTORS AND
OF QUATERNIONS.

ART. 9. The product of the length of one vector (o) into the
length of the projection of another (83) upon it is denoted by the
expression —SaB

and this function Saf of two vectors is called the scalar of af3.
By similar triangles it follows that (fig. 5)

SaB=S80aq,

F1c. 5. F16. 6.

and because the sum of the projections of any number of vectors
on any line is the projection of their sum, it appears that (fig. 6)

Sa(B+y)=SaB+Say;
and therefore the function is a doubly distributive function, or
SZaZB=23Saf.
- If the vectors a and vy are at right angles,

Say=0,
and conversely.

An equation such as Saf3=8y¢

implies that the projection of a on 8 multiplied by the length of
B is equal to the projection of 4 on ¢ into the length of §.



ART. 10.] . SCALAR AND VECTOR. 7

ART. 10. A unit of length having been assumed, let a vector
be drawn at right angles to two given vectors a and 3 so that
rotation round this vector from a to @ is positive,* and let the
length of this vector be numerically equal to the area of the
parallelogram determined by « and B8. This vector is denoted
by the symbol Vaf, ’
and is called the vector of af.

If the vectors are taken in the reverse order, V3a has the
same length as VB, but the direction is opposite, the rotation
being now reversed, so that

VBa= —Vap.

If an equation such as VaB=Vyd

A

Fi6. 7.

exists, the vectors a, 8, y and § must all be parallel to the same
plane; the areas of the parallelograms determined by a and S
and by y and § must be equal, and the sense of rotation from
a to 8 must be the same as that from y to ¢ (fig. 7).

Like Sa@, the function Vaf3 is a doubly distributive function.
If B is the component of the vector B at right angles to a it is
obvious that VaB=Va@,

a
Fi6. 8.

and the tensor of Va8 is equal to the product of the tensors of a
and of 3’ (tig. 8). :

#The convention respecting rotation which is here adopted is the opposite of
that employed by Hamilton. The axis of a rotation is taken to be in the direction
of the advance of a right-handed screw turning in a fixed nut, and this system is
now known as the right-handed system of rotation (Clerk Maxwell, Electricity and
Magnetism, Art. 23). On the other hand Hamilton calls his system right-handed,
but he takes as the axis the direction from blade to handle of a turn screw when
screwing a right-handed screw into a nut (Lectures, Art. 68, Elements, vote to
Art. 295), and accordingly some little care is necessary in comparing Hamilton’s
demonstrations with those of the present volume. Tait uses the modern right-
handed system in his quaternion writings.



8 MULTIPLICATION OF QUATERNIONS. [cmaP. 11,

If 8 and y’ are the components of 8 and +y at right angles to
a, and in the plane of the paper while a is drawn upwards at
right angles to the plane (fig. 9), the vectors Vo' and Vay’ will

C,
Va?¥’
. 1) B,

Fie. 9.
lie in the plane of the paper, at right angles respectively to 8
and y. But TVeB':TB'=TVay : Ty'=Ta, and consequently the
triangles OB'C’ and OBC, are directty similar. Hence OC, is at
right angles to 0C" and ToC, : To¢'=Ta. Consequently
0C,=Va(8/+y)=0B, + B, = Vaf + Vay.
In this relation we may replace 8 and 4" by 8 and v, so that
Va(B+vy)=VaB+Vay; V(B+y)a=VBa+Vya,

a, B8, and y being three arbitrary vectors.

We have now VZ(126= EZV(I,B
for any number of vectors, since in particular for four vectors,
V(a+B)(y+6)=V(a+B)y+ V(a+B)d=Vay+VBy+Vas+Vps.

If VaB=0 without having either a or B zero, the vector «
must be parallel to 3, for the area of the parallelogram deter-
mined by « and 8 must vanish.

ART. 11. The product of the vector « into B is defined by the
equation, aB=SaB+VaB, cceereerevereriereeaenn. (8)

and because it is the sum of two doubly distributive parts, it is
likewise doubly distributive, or

ZaZB=3Zaf.
The product Ba is not generally equal to 8. In fact
Ba=SaB—VaB because SaBS=SBa, Vaf= —VQa.



ART. 18.] PRODUCT OF TWO VECTORS. 9

Thus multiplication of vectors is not commutative. We speak
of af as the product of 8 by a, or the product of « into 3.

Adding and subtracting the expressions for the two products
af3 and Ba, we find

SaB=4%(aB+Ba), Vaf=4(a—pBa).

ARrT. 12. The sum of a scalar and a vector is called a quater-
nion because it involves four independent numbers, such as the
scalar and the three coeflicients of the vector when resolved
along three given directions (Art. 8).

Thus the produet of a pair of vectors is a quaternion, and
conversely, every quaternion may be expressed as a product of a
pair of vectors. 1If ¢ is a quaternion, if Sq is its scalar part and
Vg its vector part, so that '

¢=89+Vg;
if @ and B are two vectors at right angles to one another and to

Vg, so that Va8'=Vg; and if 8— 3" is the vector parallel to a,
for which Sa(8—8)=Sgq, then we have

Vqg=Vaf because Va(B8—B)=0; Sq¢g=SaB because Saf =0,
and therefore g=af,

or the quaternion has been reduced to the product of a pair of
vectors.

Scalars and vectors may be regarded as simply degraded cases
of quaternions.

The sum of any number of quaternions we define to be the
sum of their scalar parts plus the sum of their vector parts.
Addition of scalars is associative and commutative, and likewise
addition of vectors (Art. 3). It follows that addition of
quaternions is associative and commutative.

ART. 13. We next define the product of a quaternion and a
vector to be distributive with respect to the scalar and the vector
of the quaternion. Thus

y3=y(Sq+Vq)=ySq+yVq, qy=(8q+Vq)y=8q.y+Vq.v.

The products yVq and Vq.y fall under formula (8), and we
define that multiplication of a scalar and a vector is commutative,
so that vSq=8q.y.

Thus we can interpret expressions such as a. By or af. vy (the
product of a into the product By and the product of the pro-
duct a8 into y), and we see that they are distributive with
respect to the three vectors, so that

Sa.ZBSy=3233a.By, ZaSB.Zy=35%aB.y.
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We shall now prove that the products are associative, so that
we may omit the points, and to this end we shall consider the
laws of combination of three mutually rectangular unit-vectors,
1,7 and k.

Art. 14. Let any three mutually rectangular unit-vectors,
i, j and k, be drawn so that rotation round ¢ from j to k is
positive.

According to the usual convention, if ¢ and j are in the plane of
the paper, & will be directed vertically upwards, and it is seen at

P

Fia. 10.

once that rotation round j from k to ¢, and also round k from <
to j is positive (Fig. 10).

We have then, because the vectors are mutually perpendicular
and of unit length,

Sjk=8ki=S8ij=0; Si*=82=Sk?=—1; ..........(Art. 9)
Vik=i, Vki=j, Vig=k; Vikj= —1, Vik= —j, Vji= —k; (Art. 10)
and by formula (B) it follows at once that
R=p=lt= =1, jh=i=—kj, ki=j=—ik, ij=k=—ji....(C)
Let us now, as in the last article, form the ternary products of
these vectors. We have by the relations just given
i.gk=1.1==1=k. k=14 . k=ijk,
2j=—j=+i.k=i.iy=1%,
. p2=—t=+k.j=1.5=1",
the points being omitted as they are seen to be unnecessary.
Similarly, for every ternary product of , j and k, the points may
be shown to be unnecessary.

For quaternary products, let ¢, k, X, u each denote some one of
the three symbols 4, j, k, then

LKA = K- ARSI A=K N = UKA L = KA,

because, for example, ¢. x . A is a ternary product, as A\u must be
+4, +J, £k or —1. In this way all products of the symbols
1, §, k are seen to be associative.
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It may be a useful exercise to show that the associative law
enables us to deduce all the relations (¢) from Hamilton’s funda-

al f la (A s ..

mental formula (4), P==kl=gk=—1 ... (4)

For example, 4 . ijk= —1 gives jk=1.

Ex. 1. Prove that

Gh=jli=kij= — 1= — kji= —jik= —ikj.
Ex. 2. If the symbols i, j, k obey the laws,*
P=j=k’=+1; jk=i, ki=j, {ji=k; kji=-1i, ik=-}, ji=-k,

prove that their multiplication is dissociative.

[i2.j=+j but i.ij=i.k=-].]

AxT. 15. We can now show that multiplication of vectors is
associative. Let any three vectors, a, 8 and y be expressed in
terms of 4, j, k, so that

a=xi+y/+z2k, B=xityj+7k, y=a"i+yj+2k
By Art. 13,
a.By=322xi.yje'k=23Zay’2"i . j=ZZZay'2 ik,
af . y=22Zaiyj . 2'l=22Tay'd"y . k=TZZay 7 ijk,
so that a.By=aB.y=aBy,

and similarly for all products of higher orders.

Hence multiplication of quaternions is associative, for a qua-
ternion may be expressed as the product of a pair of vectors.

It now appears (compare Art. 13) that the product of any
number of vectors taken in any given order is a definite
quaternion.

ArT. 16. The division of vectors may be reduced to multi-
plication. By formula (B) the square of a vector is

a?=8.a?= —(Ta)?; sothat a. 1,

—a
(Ta)*
and thus it appears that — a:(Ta)? is the reciprocal of the vector

1 . . . . .
a, say a”! or =. The vector a-! is opposite to a in direction,
a

% Mr. Oliver Heaviside bases his vectorial Algebra on these laws. Prof. Knott
(Recent Innovations in Vector Theory, Proc. R.S.E., 1892-3) draws attention to
papers written by the Rev. M. O’Brien in the years 1846-52, in which the square
of a vector is taken to be positive.
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and its tensor is the reciprocal of that of a. We can therefore
interpret products such as

Ba~! and a~18,
and the first of these we shall call the quotient of 3 by a, and
denote it by B
2 °or B:a.

The reciprocal of any product of vectors is the product of their
reciprocals taken vn the reverse order. For if

. @=aBys, @=¢8y1B87 Y
we have R’ =1

in virtue of the associative law. Similarly, the reciprocal of a
product of quaternions is the product of the quaternions taken
in the reverse order. Hence every quotient of vectors or of
quaternions is a quaternion; and more generally every com-
bination of quaternions by the processes of addition, subtraction,
multiplication and division is a quaternion.

Ex. 1. Prove that ‘
S 1g= ‘T(Tf}fﬁj? if $yB=0.
Ex. 2. Distinguish between the expressions
[These may be written §y?Ba" and §Ba 1y "]
Ex. 3. Prove that
ART. 17. The conjugate Kq of a quaternion g is defined by
the relation Kg=Sq—Vq. ’

If then g=af, we have Kg=Ba (Art. 11), and
qKq=aBBa= a3 =Kqq=Ta’T3* (Art. 16).

The products of the tensors of the vectors into which a quaternion
is resolvable is therefore independent of any particular selection
of the vectors since Sq and Vg are independent of any particular
pair of vectors; and the square of this product is

qKq=(Sq+Vq)(Sq—Vq)=(Sq)*—(Vq)*=Kqq=(Tq)",

if we call this constant product of tensors, the tensor (Tq) of
the quaternion.
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Again,
g=af=Ta.Ua.TR.UB=TaTB.UaUB=Tq.Ugq
and Ug=UaUR is called the versor of the quaternion. If r— g
is the angle between the vectors a and 3, which is less than two
right angles and measured from « to 3, we see by the definitions
of Sq and Vg that (Arts. 9 and 10)
Sg=Tqecos q, TVg=Tgsin q.
The angle .gq is called the angle of the quaternion, and is
independent of any particular set of vectors a, 8.
A plane at right angles to Vq is called the plane of the
quaternion and UVy is called the axis.
Ex. 1. Prove that Kg=w—ix—jy—kz,
Tg=N(w"+2*+3"+7),
TVg=n(2*+3*+7),
UVg=(+iwv+jy+kz) : J(+22+y2+22),
Ug=(w+ix+jy+kz) : f (0P + 22+ 52+ 22),

x2+g/2+z2
VU=l

where g=w+izx+jy+ka.

Ex. 2. Write down the analogous functions of K¢ in terms of z, y, 2
and w.

Ex. 3. Prove that a”13=K. fa1.
Ex. 4. What is the nature of ¢ if g=Kq? If ¢g=~Kgq?

ARrr. 18. We can always reduce a quaternion to a quotient of
vectors (Arts. 12, 16), and write

_B_0B ;. ToB . UOB 0N L AB
1=,"ox "=Tox UI=Tox S1=oa V9=oa» “97A0P

the line BA” being drawn perpendicular to OA.

Fie. 11,

Thus the_shape of the triangle AOB is constant for a given
quaternion. From this point of view, a quaternion is called by
Hamilton a ratio of vectors, as it depends on their relative
magnitudes and on their relative directions.
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It is not difficult to show that the conjugate (see Fig. 12)

OB’ . OB
Kq = O—A if q= O‘_Ai
for g+Kq=28q, ¢q—Kq=2Vq.

The triangle AOB’ is inversely similar* to AOB.
.

Fie. 12.

Art. 19. Conversely, if the product ga is a vector @, it is
evident that « and 8 are both at right angles to Vg. And if o
is any vector at right angles to Vg, qa is a vector making a
constant angle (2¢) with a, and having its length Tq times that
of a. In other words, regarding the quaternion as an operator,
it turns vectors 4n its plane through a given angle, and alters
their lengths in a given ratio. In particular we may regard a
vector as turning vectors at right angles to it through a right
angle, and altering their lengths proportionately to its own.

The versor Uq turns vectors in its plane through the angle g
but leaves their lengths unaltered. The tensor Tq alters the
lengths of all vectors in a given ratio. The total effect produced
by ¢ on a vector in its plane may be considered to be effected in
two stages or at once as indicated by the relation

B=qa=Tq.Ugq.a=Uq.Tq.a.

ART. 20. The results of articles 18,15 and 16 afford an ex-
tremely elegant construction for the product of two quaternions
q and . Take any vector OB along the line of intersection of
the planes of the two quaternions. Make the triangle BOC in

* Hamilton uses the phrases direct similitude and inverse similitude in the sense
that two directly similar figures in a plane appear to have the same shape ; while
of two inversely similar figures one has the same shape as the reflection of the
other in a mirror.;
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the plane of + similar to the triangle determined by » (Art. 18);
make AOB in the plane of ¢ similar to the triangle of ¢; then,
by the associative principle (Fig. 13)

_oc ( _oc OB

- - = . —1. . -1 .
=ox 0C.0B-1.0B.0A )

4 =0B 0A

Fic. 13. Fi6, 14.

If the triangles BOA” and C'OB are respectively coplanar with
and similar to AOB and BOC, the second product is (Fig. 14)
r=QX( 0N 0By
1"=5c\= 08 "oc/

Ex. 1. Prove that K(r¢)=KqKr,

[Take ¢, on oc and 4, on oa so that c,0B and Boa, are inversely similar to
Boc and AoB, and the triangle 4,0c, is inversely similar to coa. Art. 18.]

Ex. 2. The product of the conjugates of any number of quaternions is
the conjugate of their product in reverse order.
[By Ex. 1, K(p.gr)=K(gr) . Kp, etc.]

Ex. 3. Show that
Spipeps...pu=t{p1p2... put+ Kp.Kp,1... Kpy],
Voupaps... pa=4[p1p2e.. pu—KpKpoo1... Kpi].
Ex. 4. If a;0,...a, are n vectors, and if Ila=aos...an Ha=a,a,-1... 04,
show that
SIlla=41To+4(—)"Il'a,
Vila=illa—b(~ I,
Ex. 5. Prove that .
Spg=Sqp; TVpg=TVqp; Lpg=rqp.
Ex. 6. Prove that pKg+9Kp=28.pKg=28.¢9Kp.

Ex. 7. Prove that the tensor of a product of any number of quaternions
is independent of their order.
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Ex. 8. Prove that the versor of a product of any number of quaternions
is the product of the versors taken in the same order.

Ex. 9. Show that three quaternions cannot in general be reduced
simultaneously to the forms
B

L, A
p“,? q_B, T_Tz‘

Ex. 10. Prove that the scalar of a product of any number of quaternions
is unchanged when the quaternions are cyclically transposed.

Ex. 11. Prove that the tensor of the vector part of a product of
quaternions remains unchanged for cyclical transposition.

Ex. 12. Prove the identity
(w — 22! — yy' — 22+ (wad' +w'z +y2 — y'2)°
+ (i + W'y +2x — 252+ (we' + w2+ 2y — 2'y)?
=+ 22+ )W 2y 2+ 2).
[See Ex. 1 of this series and Ex. 1, Art. 17. This identity is of historical

interest as regards the discovery of quaternions. See Graves’s Life of Sir
William Rowan Hamailton, vol. ii., p. 437.]

ART. 21. The multiplication of versors, to which the multiph-
cation of quaternions may be reduced by separating the tensors,
admits of a simple spherical representation.

£
¢ Uz
B
Ugr
Urg 0g
A c
Fig. 15.

A versor is represented by a directed great circle are belonging
to a definite great circle (the plane of the versor) and having a
definite length (the angle of the versor). From the figure
(Fig. 15)

o¢ O0OC OB
Urg=5a=08 0a~ U U4

OA’ OA’ OB
Ugr=50="08 " oc'= 040"

The spherical triangles ABC and A’BC’ are inversely equal.
The construction recalls the construction for the sum of vectors,
and it is allowable to write

~ ~ N

AC=FB0+AB; CA'=BA'+(GB=AB+BC.
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. . . . ~,.
This addition of vector-ares is not commutative, for C'A” is not

generally equal to &\C—equality of these vector-arcs requiring
equality of length, similarity of direction and coplanarity.

Two quaternions are commutative in order of multiplication
if, and only if, they are coplanar. A necessary condition for
commutation is that the arecs AC and A'C’ should belong to the
same great circle. If OB is not coplanar with this circle, B must
be its pole. In this case the angles of the versors are right, and

Urg Ugr

Fig. 16,

the versors are unit vectors. But a glance at the figure shows
that the versor products have oppositely directed angles, and the
products are therefore unequal (compare figs. 15 and 16).

For coplanar versors, the arc AB=CD in fig. 17, and

oC OB OC OD OD OC
UTUq—O_ﬁ_aK'O_A—E)E"BE'(E=UqUT'

D B
c
8
o) A A 0 A

Fie. 17. . Fia. 18,

That the square of a right versor is equal to negative unity is
well illustrated by fig. 18, for which :

(013)2_0A’ OB _0A’
OA/ " OB 'OA O0A

-1,

the vector OB being perpendicular to A’A.
1.Q B
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Replacing Uwrq in fig. 15 by Up, we have the new figure (fig.
19), since Ur=Upqg-! and Ugr=Uqpq-t. The point Q is the
pole of the versor Ugq or the extremity of the vector UVyg.

v]

Fie. 19.

The arcs AC and A'D are equal, and equally inclined to the
great circle ABA” since the angles of the triangles ABC and A'BC
are equal. Thus AC may be changed into A'D by a rotation
round Q through the angle AQA’, double the angle of the quater-
nion gq. The vector UVp to the pole of the arc AC is transformed

into UVqpg-! by the same rotation. Now Vgpg-t=q.Vp.q™*
because V{(q.Sp.q)=0, S(g.Vp.q!)=0, and accordingly a
conical rotation round the axis of ¢ and through double its angle
changes an arbitrary vector p into the vector qpg -

Ex. 1. If op is the vector from a fixed point to a point in a rigid body,
rotation of the body round an axis 0Q=Vyg through an angle 2.9 carries
the point P to P/, where oP'=¢.0p.g¢7L

Ex. 2. The displacement produced by the rotation is

PP'=¢.0P.¢ 1 —oOP.

Ex. 3. A translation of the body carries a point from » to P’, where
PP’ =3 is the same for all points of the body.

Ex. 4. If the body is first rotated, as in Example 1, and then translated

the displacement of p is
d+¢.op.¢g71-op;

while if it is first translated and then rotated, the displacement is
g(8+o0p)g1—opP.

Ex. 5. If the body is first rotated about one axis oQ and then about
oF' =7g.0P.q lr l=rg.0P.(rg)™L.

Ex. 6. If the first rotation is now veversed, the position of the point p
is p”, where or’'=glrq, 0P. ¢ 1r 1q.

Bx. 7. A body receives rotations about two intersecting axes. FProve
that the order in which these rotations are effected is of importance.

another ogr,

[The displacements of a point are
gr.op.r"lg7l—op and rg.op.g7'r~1-op,

and these are generally different unless gr=rgq, but then the quaternions are
coplanar and the rotations take place about one and the same axis.]
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Ex. 8. Find the reflection of a body in a plane mirror.

[The point o being on the mirror, which is perpendicular to X, the vector
A.op. A1 is the result of rotating op through two right angles round the
normal. Reversing the direction of this vector, the vector to the image of
the point P is oP'= —A.o0p. A1)

Ex. 9. Successive reflection in two mirrors is equivalent to a rotation
round the line of intersection of the mirrors through double the angle
between the mirrors.

[Here —p(~X.oP. A Dpl=+pN.or. A 1ul. Also LpA=6,
where @ is the angle between the mirrors, and 2. puA=26.]

Ex. 10. Given three lines intersecting in a point, it is required to draw
three planes, each through one of the lines, so that the lines of intersection
in one plane may be equally inclined to the contained line.

When is the problem indeterminate ?

[Let a, B, v be the vectors of the given lines. The sought lines of inter-
section are V3ay, VyBa, VayB. Compare Art. 31, p. 31.

ARrt. 22. The laws of combination of the five symbols
S V,K, Tand U
may be summarized in the symbolical multiplication table :
S vV K T U

S{s 0 S T SU
vVio vV -V 0 VU
KiS -V 1 T KU
T|+S Tv. T T —-
U — UV UK — U

to be read from the left. For example, the tensor of the vector
of a quaternion is TVgq; the scalar of the vector is 0; the
tensor of the scalar is +8¢ according as Sg is positive or
negative. A positive scalar may be regarded as the quotient of
two vectors having the same direction; for a negative scalar
the directions are opposite. Hence we may write USg=+1
according as Sq is positive or negative. The versor of a zero
quaternion must be regarded as arbitrary, unless we know a
law according to which the quaternion diminished indefinitely,
TUg=1=U%Tq for all quaternions. The versor of the conjugate
and the conjugate of the versor of a quaternion are easily seen
to be equal to one another and to the reciprocal of the versor.
The symbols T and U are not distributive like the symbols S, K
and V. Apart from change of sign, it is easy to see that the
only new combination arising from further repetition of the
symbols is TVUgq (=sin 2q).

It is necessary to make some convention concerning the notation
to be employed when we wish to denote for example the square
of the scalar of a quaternion ¢ or the scalar of the square of the
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quaternion, There can be no mistake if we employ brackets and
write (Sq)? for the square of the scalar and S(g?) for the scalar
of the square, and whenever there is the least fear of confusion
brackets should be used. One of the great advantages of
quaternions is the extreme brevity of the notation. Another
and still greater advantage is its great explicitness, and this
should never be sacrificed for the sake of a few brackets.
Hamilton writes S. 2 for the scalar of the square and Sq? for
the square of the scalar whenever there is no fear of confusion,
and he uses the notation V.q? and Vg? in a similar sense and in
conformity with the established notation d.z? and da® for the
differential of x? and for the square of the differential of .
Some eminent authorities, Tait for instance, in conformity with
the notation cos?z =(cos z)?, write S?q instead of Sq? though in
strictness this would mean S.Sq (=8Sg¢). But considering the
enormous care Hamilton took with his notation we prefer to
abide by his convention. No confusion can arise with respect
to T.q% or T¢® or (Tq)%, for the tensor of the square is . the
square of the tensor, and similarly U.¢*=Ug?=(Uq)* and
K.g?=(Kq)?=Kq2. The expression Sp.q means the product of
Sp into ¢, and it is well when possible to write this in the
equivalent form ¢Sp, while S. pq is the scalar of the product pq,
but if the expressions are at all complicated, it is safer to write

(Sp)g and S(pg).
An imaginary quaternion
Q=p+~"1.g,

where p and ¢ are real quaternions and where +/ —1 is the imaginary symbol
of algebra regarded as a scalar commutative with all quaternions, is called a

biquaternion by Hamilton. Similarly he calls imaginary vectors (a++—1. 8)
bivectors and imaginary scalars, biscalars. No ambiguity attaches to

8Q=8p+~ —18¢, or to V@=Vp++/=1Vy,

and the only ambiguity in T¢ is one of sign, and this Hamilton removes as
follows. He writes

TQ=x+—1.7,

where x and y are real scalars and where 2 is positive, and in order to
determine z and y he employs the relation (Art. 17)

(TQ)*=QKQ=pKp—g¢Kq+v-1(pKg+gKp),
or (TQR=Tp2—Tg?+2/ —18. pKg=12— g2+ 2 ~ 1.2y,
observing that ¢Kp=K.pKgq, so that the imaginary part of (T@)? may be
written 2/ =18. pKg, or 2/ —18.¢Kp.
Equating reals and imaginaries we find, from
' 22— y2=Tp?—Tq? and zy=S.pKg,

that the real positive value of x is

= (3 (Tp* ~Tg)+[H(Tp ~ TP +(S . pRayI} 2
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It may happen that T(Q€') is — TQT¢ instead of +TQTQ where @ and &
are biquaternions. In other particulars ambiguity does not arise.
The tensor of a biquaternion may vanish, and in this case we have an
equation such as
Q¢'=0,

where ¢’ =K without having either @ or § zero. The conditions are
Tp2=Tq¢? and S.pKg=0,

and when these are satisfied, the biquaternion @ is called by Hamilton a

nullifier. A few examples will be found in Chap. IV.; and the Lectures

on Quaternions (Arts. 669-675), from which this account of biquaternions has
been taken, may be consulted with advantage.*

Ex. 1. Prove that combinations of the symbols prefixed to ¢ lead to one
or other of the following :
8¢, Vg, Kg, Tq, Ug; TVg, SUgq, VUyg, TVUq, (Ug)™", UVy.

Ex. 2. Express these functions in terms of z, ¥, 2 w, ¢, j and £ (See
Ex. 1, Art. 17, p. 13.)

Ex. 3. Express these functions in terms of the tensor, axis and angle of
the quaternion.

Ex. 4. Show that the vectors UVpg and UV . UpUg are identical.

Bx. 5. If a, B and y are vectors, prove that V is a redundant symbol in
S.aV. By.

Ex. 6. Find the difference of the expressions 8. pgr and 8. pV . g
Ex. 7. If UVp=VUp, prove that Sp=0.

Ex. 8. What inference can be drawn from the equation Vg=VUq? and
what from Vg=Ugq?
Ex. 9. Prove that
T(y+B)> +(Ty~TR) unless Uy=-TUp,
and find the relation in the exceptional case.
Ex. 10. Show that
Tq+Tp>T(g+p) unless g=zp, 2>0.

Ex. 11. Show that
Tq+Sg>0 unless <g=m.

EXAMPLES TO CHAPTER IL
Bx. 1. Prove that V(a—B)(e+B)=2Vaf and assign the geometrical
interpretation.
Ex. 2. Show similarly that S(a— 3)(a+ 3)=0a?— 32 and interpret.
Ex. 3. Under what conditions is (a+ 3)(a ~ 8) equal to o — 3?7

#Clifford uses the word biquaternion in another sense, and Prof. A. M‘Aulay
has rechristened Clifford’s biquaternions, and has written a large book entitled
s Qctonions: a Development of Clifford’s Biquaternions.” (Cambridge, 1898.)
Tt does not seem to be unreasonable to retain Hamilton’s convenient word for the
purpose for which it was coined.
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Ex. 4. Establish the identity connecting three quaternions,
PP+@+r=pgr+grp+rpg, where p+qg+r=0.

Bx. 5. If the relation
1 1 «—f

B o aB
connects two vectors o and f3, prove that af3~'a—'=[-! and show that the
vectors are parallel.

Ex. 6. Reduce any two quaternions p and ¢ to quotients of vectors
having a common denominator, or in other words, find three vectors a, 3
and 7y, so that

B

p=£’ q=

)

Ex, 7. Prove that the relations
Bty

a

p+q= p—q=@;_7’ where p=§, q=%’

are consistent with the definition that the sum of quaternions is the sum of
their scalar parts plus the sum of their vector parts.

Ex. 8. For any two quaternions
glgtxr =(rxgrt; qlg£rylr=>"ttg )L
Ex. 9. The sign V is superfluous in §.aVB3y. Is it superfluous in

S ?

*
VBy
Ex. 10. The second vector a may be omitted from Va(a+8). May it
be omitted in Val(a+ B) or in Va(a+B)1?
Ex. 11. Contrast, where necessary, the four expressions,
Vo S B Vaf S B
v8? SVy® T Vys T8
Ex. 12. The laws of refraction of light from a medium of index » into
one of index »’ are comprised in the relation
aVva=n'Vva/,

S

where v, a and o’ are unit vectors along the normal, the incident and the
refracted ray, respectively.
(a) From this relation,

7o' =v/(n?+nVva?) — nvVya.

Ex. 13. It is required to find a quaternion ¢ and vectors a, 3 and v, so
that if @, b and ¢ are three given quaternions,

aq=a, bg=p, cq=7y.
a b B ¢ Y.

(a) Show that
a
3R Ty aa’
and explain how o, 8 and y can be found from these relations; the tensor
of one vector (o) being assumed. (Robert Russell.)



CHAPTER IIL

FORMULAE AND INTERPRETATIONS DEPENDING ON
PRODUCTS OF VECTORS.

ART. 23. It is often useful to consider a vector as representing
a directed area. Assuming any two vectors a, B3, so that Va3
may equal a given vector y, we may regard y as representing the
directed area of the parallelogram determined by « and S—there
being as many units of area in the parallelogram as there are
units of length in y. The shape of the area represented by a
vector is arbitrary as well as its position; its magnitude and
aspect are determinate. For there is obviously no reason why
this representation should be confined to the areas of parallelo-
grams.

Bx. A forceis represented in magnitude and line of action by the line AB.
The moment of the force at the point o is represented by

V.0A.AB.

ART. 24. The scalar of the product of three vectors is the
“wolume of the parallelepiped having conterminous edges equal to
the vectors. ’

The transformation

S.aBy=8.a(VBy+SBy)=S.aVBy

shows that this sealar is equal to the scalar of the binary produet
of a into VBy—that is, it is the negative product of the projection
of « on the normal UVBy to one face into the area of that face.
If rotation round « from B towards y is positive, the volume is
—Sapy, for the angle between a and UVBy is then acute, and
SaUV By is negative.

Ex. 1. If Saf8y=0 the vectors are coplanar, and conversely.

Ex. 2. Prove that interchange of any two vectors changes the sign of
Safy.
Ex. 3. Prove that
Safy=S8aa'a” if f=zo+d, y=ya+z'+a".
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Ex. 4, Prove the identity,
8(8—a)(8-B)(8~y)=5Byd - Bayd+8uBs—Safy.
Ex. 5. Prove that +S8aB.Ac.AD is six times the volume of the tetra-
hedron ABco,

ART. 25, The formula
V.aVBy=9SaB—BSya ..ccccoevvvininnni.n. (1)

is very important owing to its frequent occurrence. Since the
vector on the left is perpendicular to VBy it must be coplanar
with 8 and y—that is, it must be of the form #8+yy where
and y are scalars. But the vector is also perpendicular to a.
Therefore Sa(xB+yy)=0, so that the ratio of = to ¥ is
determined ; and the vector must be parallel to
w(BSay—ySaB).
It remains to determine w to satisfy
V. aVBy=w(BSay—ySap).
Multiply by ya and take the scalar part of the product, and we
ave

S.yaV.aVBy=wSyaBSay=Sya(aVBy—SaVBy)=—SyaSaBy,
so that w= —1.

The proof here given is merely illustrative of a general method.
Hamilton’s proof is as follows. Since

2V. aVBy=aVBy—VBy.a=a(By~SBy)- (By—SBy)a
=afy—Bya;
on adding the pair of cancelling terms Bay— Bay, we have
2V. aVBy=(af+Ba)y—B(ya+ay)=2vySaB—2BSay.
Adding aSBy to each side of the formula, we find the relation
V.aBy=aSBy—BSya+ySaB, ..ccooevven.n. (1L.)

which is occasionally useful.

Ex. 1. Prove that

V. VafVyd=aSByd - B8ayd=388afy - ySa 8.

Ex. 2. Provethat S.VaBVyS=SasSBy—SaySgs.

[This is S . aVAVy8.]

Ex. 3. Find the direction of the common edge of the planes parallel to
e and 3 and to y and 8.

[The normals to the planes are parallel to Va3 and Vy4é.]

Ex. 4. Prove that 8,VByVyaVaf= -(Safy)2
ART. 26. The formula
pSaBy=aSByp+BSyap+ySaBp ..cccooeen.... (r)

is of great importance, as it enables us to resolve a vector along
three vectors a, 8 and  which are not all in the same plane. It
is virtually proved in Ex. 1 of the last article.
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Otherwise assume, as we may, provided SaBy is not zero,
p=zat+yB+2y,
and operate by SBy (that is, multiply by By and take the scalar

of the product). This gives SByp=28aS8y.
Another valuable formula is

pSaBy=VBySap+ VyaSBp+VaBSyp, ............(IL)
which enables us to resolve a vector p into components at right
angles to the planes of af3, By, and of yu. Assuming

p= xV,B-y + yV‘ya + ZVa,B
and operating by Sa, S8 and Sy, the unknowns x, y and z are
found.

Ex. 1. Prove that uSByp+ 38yap+ySufp=0 if Safy=0.

Here aa+bB+cy=0, where a, b, ¢ are scalars. Operate by Vo, V3
and Vy in turn, and we find VBy :a=Vya:5=Vaf:c]

Ex. 2. In the same case, VBySup+ VyaSBp+ VafBSyp=0.
Ex. 3. Eliminate p between the equations
Sap=1, SBp=1, Syp=1, Sfp=1.
Ex. 4. Eliminate the scalars # and y fromn the relation
oxy+Br+yy+8=0.
Arr. 27. To resolve a vector along and perpendicular to a
given vector, observe that
p:k. A—IP=ASA_IP+>\‘YA_IP. ..................(I.)

In case the essentials of a problem turn on two vectors a and
B, put A= Va3, and the transformation

p=VaBS(VaB) 'p+aSB(VaB)'p—LBSa(VaB)tp ...(IL)
will often be found usetul. (Compare Art. 25.)
An expression of an analogous type is

p= Spa,@- aSﬁp +BSap'

Vo
ART. 28. The squared tensor of 8—a is
T(B—a)=TE+28aB+Ta? .....ccoovinn. (1)
for B-a)l=F*—Ba—aB+d

"Hence for a plane triangle
a4 b2—c2=2abcos C.
The identities VeB=Va(B8—a)=VB(B—a)
lead to the remaining fundamental formulae of a plane triangle,
sinA_sinB_sinC

((, b ¢




26 FORMULAE AND INTERPRETATIONS. [cHAP. 111,

Ex. 1. If T(p— «)=T(p+a), prove that Sap=0.
Ex. 2. The equations
§=K%;s%£%=o;T@+am=T@a+m;tu=Ta
are consequences one of another.

EXAMPLES TO CHAPTER IIL

Ex. 1. If V.ga=0, where ¢ is a real quaternion and a a real vector,

show that
S¢g=0, V¢|la.

Ex. 2. The relation V.ga=V.a'q implies «?=a’%, and S.(a—a’)Vg=0,

where Sq does not vanish. It may he written in the form
(a—a')Sg=V .(a+a’)Vq.

Ex. 3. Provided Sq is not zero, the relations o’ =gag~and V.ga=V.a'q
are equivalent.

Ex. 4. If a'=qag~), the quaternion g is expressible in the form

_rd+ty

* IRs

a+o

where x and y are arbitrary scalars.
Ex. 5. The same quaternion may also be written
g=u+v(a+a)+wVaad,
provided a single relation connects #, v and w. Find it.
Ex. 6. If a’'=qoq! and 3'=¢fB¢7", show that to a scalar factor
V(- a)(3 - )
=l By
=S+ a) (B~ B)

Verify that this agrees with the expression given in the last example.

Ex. 7. If three vectors «, (3, y' are derived by a conical rotation from
three others, a, 3 and vy, prove that it is possible to determine scalars z,

y and z, so that
, 2(d —a)+y(B — B)+:(y' = 7)=0.
Ex. 8. If o, B and y are any three vectors, and if ¢ is any quaternion,
we shall have
S.gag By +8.9B¢ ya+8. qyg e =8 . glag By +8. ¢ Baye+S. ¢ lyqap.
Ex. 9. If three vectors satisfy the relation
(affy)=— a2y,
they are mutually at right angles. If they satisfy
(afy)i=+a2B2%,
they are coplanar.
Ex. 10. Given that Vaf3y8=0, prove that the four vectors are coplanar,
and show that the condition is equivalent to
viosul
, B Y
Interpret this result.

Ex. 11. In any product of coplunar vectors a;ayaz0, ... ar, it is allowable
to transpose among themselves in any way the vectors with even suffixes
and also to transpose the vectors with odd suffixes among themselves.



CHAPTER 1V.
APPLICATIONS TO PLANE AND SPHERICAL TRIGONOMETRY.

Coplanar Versors.

Arrt. 29. In dealing with rotations in a plane, let ¢ be a unit-
vector perpendicular to the plane, and let angles be measured in
the sense of positive rotation round . If

Ug=cosA4c8in A, ..ccoiieiniiniiiiinnn. (1)
the versor Ug has its angle equal to A, provided A is less than
two right angles, and generally whatever magnitude the angle A
may have, Lq=A+ms where m is an integer. Hamilton calls
A the amplitude of the versor Ug, the new name being intro-
duced to avoid any confusion as to what is meant by the angle
of a versor. (Compare Art. 17, p. 13.)

It follows from the laws of multiplication of quaternions
(Axt. 21, p. 17) that

U(gr)=cos(A+B)+sin(A+B)
. . : vevreneeen(IL)
if Ug=cos A+:sin A, Ur=cos B+ sin B,}
provided A and B are less than two right angles, and this result
evidently remains true when A and B are any angles whatever.
But in full, since 2= —1,

Uq . Ur=(cos A+ sin A)(cos B+:sin B) (L)
=¢08 A cos B— sin A sin B+ (sin A cos B+ cos Asin B), )

and therefore on comparison with (1), since U(gr)=Ug . Ur, we
obtain the formulae for the expansion of cos(A+B) and of
sin(A+B) on equating separately the scalar and the vector parts.

The angle of (Ug)® is » times that of Ug, provided n is an
integer and n.q<w; and generally when » is an integer, the
amplitude of (Ug)" is n times that of Uq. If the amplitude of
Ur is one m' that of Ug, and if the two versors are coplanar, Ur
1s one of the mt roots of Uq; or we may write

Ur= (Uq)TI". ............................. (1v.)
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More generally the amplitude of (Ugym is 'n% that of Ugq, and in

a similar manner we can interpret the expression (Ug)?, where x
is any scalar, as a versor coplanar with Ug, and having its ampli-
tude = times that of Ug. If A is the amplitude of Ug, we may

write
24

for the amplitude of Uq is 2—:: times a right angle, and the ampli-
tude of ¢ is a right angle ; and still more generally, any quaternion
may be expressed as a power of a vector,

g=at, where a=TUVq.Tg%1, t:%g—. ............. (vr)

Concerning the #th roots of a quaternion g which are coplanar with it, it
must suffice to remark that these are #? in number, being the solutions of
the equations,

w o=l o o n.n=1.0-2.0-3 ., _
s DrRE AN A v o IS A G (viz)
ety Ren=l.n-2 'n_gm"'373+etc =b
T A U P T A
if g=a+b and Yg=x+y, since a+ib=(x+1y)";

so that in addition to the = real quaternion roots whose amplitudes are

27
Y eee

n

1L9+2(n -Dm

1ol
P AR n n

there are n(n — 1) imaginary quaternion roots corresponding to the imaginary
solutions of the equations (VIL.).
The exponential ¢?, where ¢ is a quaternion, is defined by the formula,

q‘Z q3
4= AT A, .
e 1+q+1_2+1.2'3+et0., .......................... (1x.)

and because quaternion multiplication is not commutative,

e”.eq=2%.2% is not e"+‘1=EM

unless ¢ happens to be coplanar with p. In general, however, because Sg,
Vg, q and Kq are commutative in order of multiplication,

1= 0¥, oKe=gdtg Ve, g1eK1=B1gVI-Ve= M,
and also by the definition of e? it follows that
Ket=eF1; oK ol=e1"Ke=¢30
and thus Tet=¢%, Uel=¢"1=cosTVg+UVgsinTVq,.........c..cees (x1.)

substitution in (1x.) and separation of the scalar and vector parts affording by
the known formulae for the expansion of a sine or cosine the second expres-
sion for Uet,
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If we write g=logq, where ¢'=el=¢"8, ... (x11.)
we have by (x1.), Slogg¢’=logTq, Vlegq¢'=logUq';
and generally if p and ¢ are any two quaternions, we may define
PI=eTBP e (xnL)
but as we shall not require much, or indeed any, acquaintance with the
logarithm or exponential of a quaternion in the sequel, we refer to Hamilton’s
Elements of Quaternions for further details.

Ex. 1. Prove that a+8~/—1 is a square root of zero, where Tu=Tg,
Saf3=0.

[See Art. 67, Ex. 1.}

Ex. 2. Show that a product pg may be zero without having p or ¢ equal
zero.

[If pq is a scalar, ¢ must be proportional to Kp. The squared tensor of
N =Tp+p is zero. (Art. 22, p. 21.)]

Ex. 3. Show that a quaternion ¢ satisfies an equation of the form
¢*+22q+y=0 when z and y are certain scalars.

Spherical Trigonometry.

ART. 830. If a, B and vy are three coinitial and unit vectors
determining a spherical triangle ABC, the whole doctrine of
the spherical triangle is contained in the relation

The vectors
o= UV% =UVBy, B=UVya, y=UVqp,

terminate at the vertices of the polar triangle, rotation round
these points from A to B, from B to C and from C to A being
positive; and in terms of these vectors the equation may be
written in the forms,

g . ;—l,= K:—é— ; (cosc+9 sinc)(cosb+ B sinb)=cosa—a'sina. (IL)
Observing that rotation round OA from ¢’ to B’is negative,
the versor

¥R’ =cos(r—B'C)~asin(r—B'C)=cos A—asin A,
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and thus on expansion of (I1.), we have
cos ccos b+ sinccos b+ 3 sin b cos c+sin bsin ¢ cos A

—~asin Asinbsin¢=cosag—a’'sind. ............... (1)
The scalar part of this equation gives the fundamental relation
cosa=cosbcos c+sinhsinccosA;....oouinnnne. ()

while the vector part is
asin Asinbsinc=q sina+ 3 sinbeosc+y sinccosb. ...(V.)
Operating by Sa on this vector,
sin A sin b sin ¢ = —sin aSaUVBy= —SafBy,

50 that sinA_sinB_sinC_  Safy (v1)
sing sinb sinc  singsinbsineg 7T )
Now (compare Art. 17 and Art. 25),
1=T(aBy)?

=(SaBy)—(VaBy)=(SaBy) —(aSBy —BSya+ySaB)’
= (SaBy)—(a?SBy? + B2ya® +y2SaB?—2SBySyaSap),
and accordingly, in terms of the sides of the triangle,
—SaBy =+ (1 —cos’a—cos?h — cos’c+ 2 cos & cos b cos c)%, ..(vIL)
and thus the remaining fundamental relations are established.

2a 28 2¢
Ex. 1. Prove that atBryT = -1,
rotation round o from f3 to y being supposed positive.
A ’ al ’ ' _g:
[For the supplemental triangle P - %=1, o =Y T ete (compare

Art. 29 (v.)).]
Ex. 2. Deduce the relations
€OS C+COS A COS B=cos ¢sin A sin B,
vysinc=asinacosB+Bsinbcosa+Vefsinasins

Ex. 3. If p is any point on the surface of the sphere and q the foot of
the perpendicular let fall from this point on the side B, prove that

08 PC Sin ¢ =08 PA $in A ¢os B+ cos PB sin B ¢os A +sin PQ 8in ¢ sin A sin B.
Ex. 4. Taking P at the centre of the circumscribing small circle, prove
that . 2cotrsin} S=sin AsinBsing,

where R is the radius of the small circle and where X is the spherical excess.

Ex. 5. Show how to represent versors and their products by versor
angles analogous to the versor arcs of Art. 21, p. 16.

Tag W u

[By Ex. 1, y~ " o 7, so that if the versor a* is represented by a
2B

directed angle A at the extremity of the vector a, and if 8~ is similarly
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represented by a directed angle B at the extremity of B; the product is
represented by the directed external angle = —c at the extremity of y.

c
Jpq

Fig. 21.

To construct the product of two versors p and ¢ on this plan, let A be the
extremity of UVp, and B of UVg. Draw the great circle A, and the great
circles Ac and Bc making the angles £p and 2¢ with AB, and intersecting in
the point ¢, round which rotation from A to B is positive. Then pg is
represented by the external angle at c. To construct the product ¢p, a
point ¢, must be similarly found below B, so that rotation round it from
B to a is positive. The method may be extended to spherical polygons
(Elements of Quaternions, Art. 313).

Arr. 31. In his fifth and sixth lectures and in Art. 297 of the
Elements of Quaternions, Hamilton has developed at consider-
able length a curious and interesting theory connected with the
“fourth proportional” 8a,~'y, to three given vectors and with
the area of a spherical triangle ABC, whose sides are bisected in
A, B, and C, by the extremities of these vectors.

The vectors a, 3, and y terminating at the vertices of ABC, and

Fie. 22,

A, B, C, being the middle points of the sides of the triangle, we
have the relations,

3 a a 4 3
o Y-(%) %7,:(;); za/=§=(§); ............ (1)
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and from these relations or directly, we find

v=a,Bq,"Y, a=By8,7% B=rvay, RTIN ¢ i |
Hence a=B/alyla‘)/l—lal—lﬁz_l=B/a/_ly/ayznlalﬁ/-l=pap_1} ( I)
111,

if p=0Ba,"y,

is the “fourth proportional” to B, a, and vy, so that the conical
rotation produced by p( )p-! leaves the vector a unchanged, and
therefore +a is the axis of the quaternion p.

Again we have

p')’,p_l= ,(1,—1. ‘Y/- a/B/_li

so that the conical rotation in question produces the same effect
on the vector v, as the conical rotation round P—the pole of the
great circle A B —through twice the angle of B,a,~%. And because
the point C, can be converted into the extremity of pyp~tbya
rotation round P or round A, this extremity must be the reflection
of ¢ with respect to the great circle PA. ~Thus the angle of the
quaternion p is CAL if +a is its axis, while it is CAP if —a is
its axis, and we proceed to show that the former alternative
ig true.

The point P being the pole of A B, the angles L and M are
right. Taking ON perpendicular to AB, it follows that the
triangle NCB, is equal to LAB, and that NCA, is equal to MBA,,
for NCB, has the side BC, the angle CBN and the right angle
CNB, equal respectively to the side AB, the angle ABL and the
right angle ALB, of the triangle ALB,. Hence AL is equal to BM,
both being equal to CN; the triangle APB is isosceles, its equal
sides being complements of AL or BM; and the equal external
angles CAL or CBM of this triangle are equal to 1(A+B4C),
CAL+CBM being A+B+BAL+ABM=A+B+BCN+ACN.
Moreover, if we join PC, the angle PC,A will be right, C, being
the middle of the base of the isosceles triangle APB; and the
angle CPA will be equal to -Ba,? for it is . BPA or }ML or
AB, since by the equality of the small triangles MA =AN and
NB,=BL. Hence by the construction of Ex. 5, Art. 30, the angle
C,PA represents B,a,"! and ACP represents y, so that C AL repre-
sents p or B,a,~'y, and therefore

tp=crPBaty,=3(A+B+C), UVp=a. ............. @av.)

Again we have this remarkable transformation by (1.),

IRV
pa—l_.:Bla/-l,y/a—l:%. az,. Z_/=<;> (%) (g) ) eearaeens (v.)
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s0 that for the new quaternion,

LIS P7 %
p’:(%) <%> (g), ......................... (VL)
Lp'=3Z=3(A+B+C—7), UVp'=¢, ccocernnannn (VIL)

if X is the spherical excess of the triangle ABC, because

tp'=cpai=p-3.
2

EXAMPLES TO CHAPTER 1V.

Ex. 1. If o is a unit vector at right angles to 3, show that
a*fB=fa*
where w is a scalar.
Ex. 2. If o, 8 and y are unit vectors, mutually at right angles,
: a“fB=Vyu+ VGt
Ex. 3. Given two sets «, 8, y and «, 3, ¥’ of mutually rectangular unit

vectors in the same order of rotation, so that o' =+ B'y" if a=+ By, show
that we may connect the two sets by the series of relations

(1) yi=7, a=acosy¥+Bsiny, PBy=—asiny+Bcosy;

(2) By=PBy ya=710080+ 0,806, ay=—vysinf+acos6;

(3) Y=vy d=aycosp+By8in¢, B'=—0,8n¢+PBycosd;
and draw a figure to exhibit the Eulerian angles y, 8 and ¢.

Ex. 4. The conical rotation ¢( )¢~! which converts the first set of vectors
of the last example into the second is determined by the versor
g=cos}fcos () +y cos }Bsin §(p+V)
+asin}Osin b($— )+ Bsin}Geos (- V)
(see Tait’'s Quaternions, Art. 373); while other expressions for the same
versor are
2% ¢ W 8 b v o4
g={(y" B yi". (y" B y™, and g=y"BTy".

Ex. 5. Given in order n coinitial vectors a,, ay, ... a, it is required to
draw » planes, each through one of the vectors, so that the lines of intersec-
tion of each plane with the two adjacent may be equally inclined to the
contained vector. Prove that the vector along the intersection of the planes
through «, and «, is parallel to Va, 0, ... a1.

Ex. 6. Show that
(g)%(‘)’ )%(ﬁ)%z U(y+a) U@+B)__ o  U(B+y)
¥ a/  UB+7y) a U(y+a) Ufa+p)
=<‘)’+a . a+f3 . B+‘)’)%
B+y y+a a+p/’
where a, 8 and y are any three unit vectors.
C

B
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Ex. 7. If o, 3, Z and 8 are the vectors from the centre to four points
A, B, ¢ and D on a sphere of unit radius, show that

24 2B 2C 2D
a® B T v T = 1,

when the quadrilateral is uncrossed, and when rotation round an internal
point from 4 to B to ¢ to D is positive.

(@) Hence

(cos A+ asin A)(cos B+ 3 sin B)=(cos D — § sin p)(cos c —y sin¢).
(b) Also ‘
€08 A CO8 B— SiN A 8in B COS AB=C0S D C0S C —Sin D 8in ¢ ¢cos CD ;
and if p is any fifth point on the sphere from which perpendiculars pq and
PR are let fall on the arcs AB and cp,
sin A cos B COS AP+ 08 A 8in B cos BP +sin A sin Bsin ABsin pQ
+8in ¢ cos D ¢os CP + €08 C cos D cos DP+sin ¢ sin D sin ¢p sin PR=0.

(¢) Examine the cases in which P is taken to be the pole of a side or of a
diagonal, or the point of intersection of ap and cp. (See Elements of
Quaternions, Art. 313.)

Ex. 8. If «=UVBy, =UVya, y=UVaf, where Ta=TR=Ty=1,
and Safy <0, prove that a=UVSy, f=UVyu and y= UVe'fs.

(a) If A, B and c are the supglements of the angles between the pairs of
vectors 8, ¥'; ¥, ' ; and o, 3, deduce the relation

24 2B 2€

o B k4 y L
(b) Show that this equation may be transformed into
ede BB oCy=—1.

(¢) Examine whether it may be further simplified to
edatBB+Oy— 1,

and carefully state your reason. (Bishop Law’s Premium, 1898.)



CHAPTER V.
GEOMETRY OF THE STRAIGHT LINE AND PLANE.

ART. 32. The vector p=OP being drawn from a fixed origin
and being regarded as variable, the equations

Spa=0, and VeB=0, ..ccceovvvininann.... (1)
represent respectively the plane through the origin perpendicular
to « and the line through the origin parallel to 3.

If y=0C, §=0D, the equations of a plane through € and a
line through D are respectively

S(p—y)a=0, and V(p—=08)B=0. ............... (1)
These may be replaced by
p=vy+ar, and p=6+8t .cccevrirriannnn.. (1)

where T is an arbitrary vector subject to the single implied
condition Sar=0, and where ¢ is an arbitrary scalar.

The point E in which the line intersects the plane is the -
extremity of the vector,

e=3—,8§(6——y)(£ or e=y+w. ......... (v.)

SBa Saf v

The first of these expressions has been found by substituting
8+t for p in the first equation (I1.) of the plane. The second
has been found by replacing p by y+a7 in the first equation of
the line. Another expression for the vector to the same point

of intersection is
__BSay+VaVBs
6 — __b‘(“IB—‘- ------------------------ (V-)

From (1v.) we have the intercept DE=e—¢ on the line, and
the interval CE=¢—~y in the plane between the fixed points
and the point of intersection.
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If we make in (1v.), B=a, we find the foot of the perpendicular
from the point D on the plane to be at the extremity of the vector

OM=y=06—a"18(d—vy)a or u=y+aV(y—da, ...(V1)
since the line being mow parallel to a is perpendicular to the
plane.

The vector perpendicular from the point D on the plane is

DM=y—38=—a " 'S(0—y)a=aSa™'DC, .......... (VIL)

and it will be noticed that we may directly obtain the vectors
DM and CM by resolving the vector DC along and perpendicularly
the vector a. (Art. 27.)

If in (1v.) we replace a by B, we find the foot of the perpen-
dicular from the point C on the line to be the extremity of
the vector

ON=y=8—8"18(8—7)B or v=y+BV(y—9)B. (V1)

because now the plane is perpendicular to the line. The vector
perpendicular is

ON=B-1V(y—38)B=B"1VBCD. ccc0c.cerrvreeee (1x.)

In general the normal to the plane (1) makes with the line an

angle determined by
\

_I Ba; (X))

SVBa
and if we are required to draw a plane through the point C
making a given angle with the line, we have
UB=cos fUa+sin OUra; while Ua=cos UB+sin oU~B,...(x1)
if the line is to be drawn inclined at a given angle to the plane.

In these equations the vector T is arbitrary, subject to the implied
conditions, which are Stqa=0 and S73=0 respectively.

cosG=SU§, or sinG:TVUaB, or tanf=

Ex. 1. Two objects, B and c, are observed from the origin of the vector a
to be in the directions US and Uy, and from the extremity of « to be in the
directions U’ and Uy’ ; prove that the vector Bc is

VaUy _yyg VaUB
VUvyy voap?

and point out the conditions implied in this expression.

[For the point B we have zUB=a+yUf', and therefore

£ZVUBR =VUR.]

Ex. 2. Four points 4, B, ¢, are viewed from a fifth point p. Prove that

they appear to form a parallelogram ascD if
U(Upa+Urc)=TU(Uprp+ Urb) ;

a rectangle if Upa+Urc=UrB+Urp;
and a square if in addition SUpa.re=8Urs. PC.

Uy
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[The first condition requires the diagonals acand Bp to appear to bisect
one another. The second requires that they should also appear to be equal,
and the third imposes the additional condition that adjacent sides should
appear to be equal.}

Ex. 3. Find the equation of the locus of a point equidistant (1) from two
fixed points, (2) from two fixed planes.

Ex. 4. The extremity of the vector p is projected from the extremity of
the vector « into a point on the plane SAp+1=0. Prove that this point
lies at the extremity of the vector

VAVap+(p—a)
SA{a—p)

ART. 33. The equation of a plane through the points C, (', and
of a line through D, D', are respectively,

S(p—y)y' —y)a=0 and V(p—08)(6~38)=0; ........ (1.)
or S(py+yy +v¥p)a=0 and V(pé+485'+8p)=0; ...... (IL)
or =11“{%;/+ua and p=§1:|__g; ceeerreeeemeenne(TIL)

the plane being determined by the condition that the vectors CP
and CC' shall be coplanar with some fixed vector a, and the line
requiring that DP shall be parallel to DD".

The various expressions given in the last article may be modi-
fied to suit the present case by replacing « and 3 by V(y'—v)a
and &' — § respectively.

The plane through CC’ parallel to the line DD’ is

S(p=y)y —y)(&—68)=0,........ evererann (1v.)
because the normal to the plane must be perpendicular to the
line, so that SV(y'—y)a.(8'—38)=0, or a=a(y'—y)+y(&~4),
where z and vy are certain scalars which disappear on substituting
in (L).

If a plane can be drawn through CC" perpendicular to DD, the
equation VV(y' —y)a.(8'—38)=0, requiring S(y —y)(é’'—3)=0,
must be satisfied.

We may, without loss of generality, take o to be perpendicular
to €/, and as it easily appears that the plane for which in addi-
tion Sa(8’—8)=0 is most inclined to the given line, we can verify
that the minimum value of

_TV. V(¥ =y)a.(6=9). __Sy=y)(&=9)
S V(y=y)a. =3 is tan 6, T\’(y’m———y)(é’—a)(v')

where the vector o is regarded as variable, and that the plane

SV p—y) v =V =) =8)=0............. (vL)
is most inclined to the given line.

tan =
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ART. 34, The equation of a plane through three given points,

4, B, G, 18 SpV(By+ya+aB)=SaBy, .coceveirinnanien, --(1)
for the condition that PA, PB and PC should be coplanar reduces
to this expression; and in this equation V(8y+vya+af) repre-
sents double the vector area of the face ABC, while —Safy is the
volume of the parallelepiped having three conterminous sides,
OA, OB, OC (Art. 24). The equation may be taken as asserting
that if through the boundary of a vector area determined by
V(By +vya+aB) we draw vectors equal and parallel to OP (P being
any point in the plane), the volume of the solid thus constructed
is equal to that of the parallelepiped (Art. 23).
Writing for brevity, the equation of a plane in the form

the vectors SAo=1, i (1)

p=8—A"Y(SA6—=1)=A"1VAS+A-L, and DM =X-1—\"1SA§ (IIL)

are respectively the vector to the foot of the perpendicular from
a point D on the plane, and the vector-perpendicular from the
same point.

To find a plane equally inclined to three given lines OA, OB and
0C, we have

cos 8. TA=—SAUa= —SAUB= —S\Uy,
8o that (Art. 26)
Ux.sec6.SUaBy=—V(UBy+Uvya+UafB),
sec 0= —TV(UBy+ Uya+UaB)(SUaBy) 1,
and the equation of the plane is
SpV(UBy+Uya+ UaB)=const.,
or SpV(ByTa+yalB+aBTy)=const.
A plane equally inclined to the faces of the pyramid OABC is
represented by
Sp(aTVBy+BTVya+yTVaf)=const.;
a plane cutting off equal areas on its faces is
Sp(UVBy+UVya+UVaB)=const,
a
or SpV <1%‘y+% +T\7€7&
while the equations of the planes cutting off equal intercepts

from the edges and from the normals to the faces have been
already found.

) = const. ;

Ex.1. Find a plane equally inclined to the bisectors of the angles of the
faces of the pyramid oasc.
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BEx. 2. The planes through an edge and through the bisector of the angle
of the opposite face intersect in a line.

Ex. 3. Find the equation of the plane bisecting the angle between a pair
of faces.

Ex. 4. Find the equation of a plane through an edge and normal to the
opposite face, and prove that three such planes intersect in a line.

ARrT. 35. The line of intersection of the planes
u=A+t,

Shp=1, Sup=1 is VoViu=u—A, or p=——v—)\—u— 5-ee(1)
and that of the planes
Shp=1, Sup=0 is VoVau=u, or p="€'r—;\i_£.
Three planes SAp=1, Sup=m, Svp="n intersect in the point
oSNy = V(v +myA+nAp); coeeiincininiennn. (1L)
and the condition that the planes should intersect in a line is
V(ur+mod+0A0)=0, cccooviniiiiiiai. (111.)
if I, m and n are not all zero. If they are all zero, the condition
is SAry=0. cciviiriiiiiiiiii (v.)
Four planes intersect in a point if the condition
Sl —mAB + AT = pAuy) =0 oo, V)

is satisfied, the equation of the fourth plane being Spw=p.
The conditions of intersection (IIL) and (v.) may be replaced
by the pairs of simultaneous equations

A +yu+2v=0, zl+ym+2zn=0; ...c.....o..u (vL)

and o +yn+oat+wo=0, al+ymtnt+wp=0.... (vIL)

respectively, the compatibility of the equations (VL) or (VIL)
being equivalent to (1IL.) or (V.).

ART. 36. Given a pair of lines

V(p—v)a=0,0r p=y+ta; and V(p-y)a'=0, or p= v +td, (1)

the vector from a point P on the first to a point P’ on the second is

PP'=-y'—'y+t'a'—ta. ........................ (11.)

If it is possible to select the scalars ¢ and ' so that this vector
may vanish, the lines intersect and the condition of their inter-
section is »

S.PPVda=0, or S(y —v)da=0,............. (L)

P and P’ being arbitrary points on the lines.
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Resolving the vector PP into two components, parallel and
perpendicular to the vector Va'a, which is at right angles to the
directions of the two lines,

PP =Vad'S(Vad) 'PP+ Vaa'V.(Vaa')" PP
< PP’ (1/ ’, » a /,
=Vaa Sm-}-as Vg LE ¢ S Voo P

and substituting from (11.) on the right,
/— ’ Y’_‘y ( __a,_ /_ _ >
PP =Vad'S Voo +a Svaa,(y v)—t

s (1v.)
—d(Syty -y -t) )

Thus the line joining the arbitrary points has a fixed com-
ponent perpendicular to the directions of the two lines, and
suitably selecting the scalars ¢ and ¢ in (1v.) we see that

’ ’ ‘)/_ a ,
PoPy = Vau SW;’,’ OFy=y+aSy (v —Y),]

7
aa

o cenen(V)
OF=vy'+aSy - (¥~ j

are respectively, the vector-perpendicular to the two lines, or the
vector shortest distance from the first line to the second, and
the vectors from the origin to the feet of this shortest vector—the
points P, and P,

Ex. 1. Verify that p,py=o0py — 0P, in equation (v.).

Ex. 2. Draw a line through a point (E) to intersect two given lines

V(p-y)a=0, V(p—y)a'=0.
[The line is parallel to V. V(e—vy)aV(e~y)a’. See (111).]

Ex. 3. The locus of a line which intersects three given lines is repre-

sented by
8. V(p-v)aV(p-y)dV(p—y")a"=0.

(@) Reduce this equation to the form X¥V=ZW, where X, ¥, Z and W
are planes,

Ex. 4. Writing a=Vpp, T=p,—py,
prove that o and 7 are merely multiplied by a scalar, if for p, and p, are
substituted the vectors to any two points on the line of their extremities.

(a) Conversely, given any two vectors, o and T, satisfying the relation
So7=0, show how they determine a line parallel to r.

() In this notation any two lines may be denoted by the symbols (o, 7)
and (¢, 7). Prove that the lines intersect if

Sor’' + 8a'T=0.

(¢) Any scalar relation homogeneous in the pair of vectors ¢ and r

imposes a single condition on a line.
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(d) If the planes SA;p+1=0, SAyp+1=0 contain the extremities of the

vectors p, and p,, show that
o=Vppo=u(Ay—A), T=p,—p=—uVAA,

where « is some scalar.

(¢) Hence any relation homogeneous in the pair of vectors o and T when
equated to zero may be expressed in the forms

Jo, 7)=0, F(Vpupa p2—p)=0, f(As— Ay, — VAA,)=0.

(/) According as the equation f(o, 7)=0
is equivalent to one, two or three scalar equations, it represents a complex,
a congruence or a regulus of right lines, and the constituents of the vectors
o and 7, when resolved along three mutually rectangular directions, are

Pliicker’s coordinates of a line. (See Salmon, Geometry of Three Dimensions,
Chap. x111., Section 11.)

(g) The lines of a complex f(o, 7)=0( f being now a scalar function}), which
pass through a point, the extremity of the fixed vector p;, generate a cone

J(Vpy, 7)=0;
and the lines which lie in a fixed plane, SA;p+1=0, envelope the cone whose
vertex is the origin and which is the reciprocal of the cone

Jlo, = VAo)=0.

ART. 37. The vector to any point on the line joining two
given points A and B is
a+t8

14+¢°

¢t being a variable scalar. If P, and P, are any two points on
the line, their vector distance is

a+t26_a+t118=(t2_t1)(:8"f4)=, (t‘.’_tl)AB . (II)
1+, 144 (I+5)(+8) (L+6)(d+8)" 7

and the anharmonic ratio of any four collinear points is

PPy PP, (fy—t)(f,—1y)
PyPy . PPy (G—1y)(t —1,)

PP,=

(B p,P,P =008 dmn o4 S L (11L)

In particular

(APBP')=(t— 0)(t'—o0) t

(00 O0—F) ¢ s (v)

More generally, the anharmonic ratio of any four points
Q1, Q,, Q; and Q, collinear with any two points P/, P’, of the range,
aOP +thOP” (—t)(t,—ty)
N=——y— -2 14 8L .
< a+tb (ts—1t) (t,—t,) )
The two ranges (1.) and (v.) are homographic.

, 18 (Q1Q2Q3Q4)=

Ex. 1. If the range aApBP' is harmonic, prove that
1,1 2 1 1 _ 2
AP AP AB : p—a p-a B-a
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Ex. 2. Any two homographic ranges situated on a common line,
_aa+th  ,_ey+tdd
et T cxed”
may be simultaneously reduced to the forms,
€438 ,__e€+sn
P T+ PTess?

Ex. 3. Show that the vectors ¢ and 7 satisfy the equation,

ad(a—€)(8—€)—be(B—e€)(y—€)=0.

ARrT. 38. In many problems relating to a tetrahedron, it is convenient to
have the equations expressed in a symmetrical manner, and some of the
following relations will be found occasionally useful.

If the vectors A, p, v and @ are the vector areas of the faces of a tetra-
hedron ABCD we may write :

A=V(By+y3+B), p=-V(y+ydtda), } )
v=V(eB+B8+8a), T=-V(ef+By+ya)
These vectors are independent of the origin, and their sum is zero, or
SA=A+p+ v+ D=0 crereriiiineiiiein (1r.)

Again, if J, m, n, p are the sextupled volumes of the pyramids subtended
at the origin by the four faces,

1=8By8, m=—-Sayd, n=Saf8, p=-Safy; .cccccrrn. (111)
and their sum is the sextupled volume of the tetrahedron, or
SU=l4m R P="0yteeirereenrrniiiniiinn @)
and is independent of the origin. Also,
Slo=la+mB+ny+Ppd=0. cccccerriierinirannnani (v.)

Changing the origin to the extremity of the vector w, and putting
o'=u -, etc., the volumes subtended by the faces at the new origin are

I=8Bv8=8(f~-0)(y ~w)(d-w) etc,
or U'=l—80), m'=m—Swu, n'=n—Swv, p'=p—SoB®....... (vr)
But still (by v.),
Sl =0:=3( - Swl)(a - 0)=Sla+ w2l - ZaSwl +SwZA,

and this reduces by former results to the new relation,

O+ ZaSoA =0, coiiiriiiiiiiiiress (viL)
which holds for all vectors w. Operating on this by S«/, we may write the
result in the form, Sw{w=l+ZASaw)=0; and, because w is arbitrary, the

part within brackets must vanish. But o is also arbitrary, and accordingly,
for all vectors w, we have

Ol HTASOA=10. cireeririinieniiniiiaranaaeens (viiL)
Again, it is easy to see that
Sod=al+Bp+yr+8@T=—3w=TAa; «ccoieiiiiiiiinn (1x.)

and, for verification, it is sufficient to take the terms in a3y, which are
uVBy—BVay+yVafi=-3p.

The sum ZaA is independent of the origin.
On the whole, we have

SA=0; Sl=v; Sla=0; —wv="ASwe=ZaSw); —3v=Zad=2Ae....(X)
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It is sometimes convenient to employ the vector perpendiculars from the
vertices on the opposite faces instead of the vector areas. If a, 8, v, and §,
are these vectors, 1t is easily seen that

D= A=Bp=YV=8T, ccc..cccrrrrriiininiiriiennnns (x1)
because, in fact, the equation of the face Bcp may be written
SpA=!, or S(p—u)A=v, or S(p-a)a, =1
Thus (x.) gives

s1_0, S1cv; Sa=0; —wr=3180a=Sas?; —3=3%=310 . (xu)
a/ ‘ (]'l al al
Ex. 1. Prove that the vector sides of the tetrahedron are given in terms
of the vector areas of the faces by the relations

Vip=(y-8v; Viv=—(B-8)v; VAa=(B-y)v;
Vuv=(0a—8)v; VuB=—(a—y)v; Vid=(a—L)v;

and show how to connect the rule of signs with that for the expansion of
a determinant of the fourth order.

Ex. 2. Show that
SpvD =SAv@ =SAu® = — SApr =02
Ex. 3. Given the magnitudes of the areas of the faces of a tetrahedron,

show that the directions of the normals UA, Uy, and Uv to three of the
faces must satisfy the relation

T2 =TA2+Tp2+Tv? - 2TpurSUpy — 2TvASUVA - 2TApSUA p.
ART. 39, Any five vectors are connected by relations of the form

ao+bB+cy+dd+ee=0, where a+b+ct+d+e=0; covnrann @)
and if the vectors are drawn from a common origin o, and terminate at the
five points 4, B, ¢, D, E,

@:b:c:d:e=(BCDE) : — (ACDE) : (ABDE) : — (ABCE) : (ABCD), vuvennnns (11.)
where (ABcp) is the volume of the tetrahedron determined by the four points
A, B, C, D,

" To ’prove this, remark that if
a(a=e)+0(B—€)+c(y —€)+d(6—e€)=0,
the ratios of the four scalars a, b, ¢ and d have the values defined by equation
(11.). (Compare Art. 24, Ex. 5.) The fifth scalar ¢ is —(a+b+c+d).
It should be noticed that the five scalars are absolutely independent of
the origin of vectors.

Ex. Any five quaternions are connected by a relation of the form
ep+yq+r+ws+ot=0
where z, 3, 2, w and v are scalars.

ART. 40. Hamilton has elaborated a remarkable system of coordinates
which he terms “ Anharmonic Coordinates,” the nature of which we proceed
to explain. :

In accordance with the last Article we may write any vector op in terms
of the vectors to four points 4, B, ¢, D in the form

op= p= TGt YOBecyTUdS | e )

ra+yb+zc+wd
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where «, b, ¢ and d are arbitrarily assumed constants and where 2, ¥, z and
w are the anharmonic coordinates in question.
The point U at the extremity of the vector

_ aa+bB+ey+dé -
oUu=v= atbtetd [ R LT TEE RIS ( )
is called the unit point, its anharmonic coordinates being equal to unity.

The point r, whose coordinates are »+¢7, Y+, z+17, w+tw,is collinear
with the points p and ¥, for

orZza+oPtZx'a
= e eer e UPTUUTRRRRRPN IiL
P Sra+tZza (ur)
And, in particular, the planes cor and cpu cut the edge AB in the points
determined by s
rao+yb aa+bd )
12=——x“—+yb—3, OUp= atd Cetaisrseesiaaee (IV.)
for Py, P and Py, are collinear, and also Uy, U and Uy, where
opa,— Y +wdd o= +dd
B setwd ’ - etd

Denoting by (cp.arsu) the anharmonic ratio of the pencil of planes
through the edge cp and the points 4, ®, B and U, we have

(cp. APBD)=(AP43BU ;) =% 3 eereeerateniirerenerertatenns (v.)
and similarly, (ac.BPDU)= ?5, ete.

The ratios consequently of pairs of the coordinates, z, y, 2, w of a point p
are expressible as anharmonic ratios ; and tke coordinates are unchanged by
any linear transformation, it being understood that the unit point undergoes
the same transformation as the vertices of the tetrahedron.

To suit special circumstances, the unit point may be specially selected.
1t may, for example, be taken at the mean point of the tetrahedron, and
then a=b=c¢=d=1.

Ex.1. The vector p of any point P of space may, in indefinitely many
ways, be expressed under the form

op= _ waa+ybf + zcy 4 wdd + vee
TP T vatybtacrwdtve
where aa+bB+cy+dd+ee=0, atb+ct+d+e=0.

[In terms of the four vectors a, B3, v, 3, the anharmonic coordinates of
the point are x—v, y—», z—v and w—v. See also Art. 39.]
Bx. 2. The equation of a plane in anharmonic coordinates being
lo+my+nz+pw=0,
prove that the ratios of the coordinates of the plane , m, n, p are expressible
as anharmonic ratios.
ama —blf3

o= bl and the anhar-

The line AR cuts the plane in the point oL;;=

. . m
monic ratio (AUBLg)= —7.]

Px. 3. Find the condition that the planes 7, m, n, p and 7, m’, %, p
should be parallel.
[The plane at infinity is ax+by +cz+dw=0.]
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EXAMPLES TO CHAPTER V.

Ex. 1. The equation of the plane through the origin perpendicular to the
vector o may be written in any one of the seven forms,

sf—o; T*eoq; (P-T; PyKRP-o; U(£)2= -1;
a p—a a 27 a a a
T(p+a)=T(p—a); Spa=0.
Ex. 2. 'The equation
T(p—a)=T(o~ )
represents the plane bisecting at right angles the line A».
Ex. 3. The equations
Ul=1, Ul=-1, (UB)2=1
a o .
represent respectively the half-line through the origin, having the direction

of the vector a, the half-line having the direction of —a, and the whole line
parallel to a.

Ex. 4, The equations
sul_suB gul-- suB
a a a a

represent the two sheets of the cone of revolution, with o for vertex, oa for
axis, and passing through the point B (Elements, Art. 196 (4)).

Bx. 5. The equation TV g _TV ,i_}

represents the right circular cylinder, of which o4 is the axis and B a point.

Ex. 6. If A, B, ¢ and D are the vertices of a regular tetrahedron having its

centre at the origin, atPBry+8=0;
a?=B2=ete.= —38u«f= - 38Fy=ete.;
Tas=2,/3ToA.

EBx. 7. Find the area of a face of the regular tetrahedron and the volume
in terms of the vector from the centre to a vertex.

Ex. 8. The six vectors +a, +[3, +v terminate at the vertices of a
regular octahedron. Find the conditions the vectors must satisfy, and deter-
mine the volume, area of face, length of side.

Ex. 9. If 4, B, c, D are any four points in a plane, the vectors a, B,y 8,
drawn from an arbitrary origin to terminate at these points, are connected

by a relation of the form,
aa+bB+cy+d8=0, where a+b+ec+d=0.

(a) The vector off =y == v

terminates at the point of intersection of AB and cp.
(b) If o’ and B are points similarly constructed on the remaining sides B¢
and ca of the triangle ABc,
ac’
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(¢) Hence deduce the equation of six segments,
Ac Ba' CB_
s ac Ba
(d) The right line B'c’ meets Bc in the point A", where

o BBy (@Y —(+a)
b—c b—c

(¢) Hence A’ and A” are harmonic conjugates to 8 and c.
(f) The equation of the six segments made by the transversal ¢'s'A” is

’ ’

ACT CB' BAT
¢B BA A'C

(9) The points A", 8", ¢ are collinear, and the vectors a”, 8" and y” are

connected by a relation,
lo" +mf"+ny”, where I+m+n=0.

(%) The line Ap meets B'c” in the point o™, where

oA = o =B d8_(a+b)yy +(c+a),8
- a—-d 2a+b+c¢

(?) The points B”, ¢, A” lie on the polar line of the point A with respect
to the triangle Bcp.

Ex. 10. Let aBcp be any tetrahedron, and E any arbitrary point, the
vectors from an arbitrary origin to the five points 4, B, ¢, b, E are con-
nected by the relation,

au+bB+cy+di+ee=0, a+btctd+e=0.

(a) The line AE meets the opposite face in o', where

OA,=a,=aa+ee_bB+cy+d8

a+te btet+d
(b) The line A’® intersects the line AB in the point,
aa— bB
Ta=b
(¢) The six points formed in this way form a complete quadrilateral.
(d) The vector to any point in the plane of this quadrilateral is of the
form, x(aa—bf) +y(ao —cy)+2(a0~dd) +w(aa+bB+cy + dd+ ee)
p= z(a—b)+y(a—c)+z(a—d)+w(a+b+c+d+e)
(¢) The line AE meets this plane in the point 4, where
_4aa+ee
‘" Tdate’
Ex. 11. The tetrahedra whose vertices are at the extremities of the
vectors a, B, y, 8 and aq, bf3, ¢y, d8 respectively are in perspective.
(¢) Corresponding edges intersect in points at the extremities of vectors
of the type, aa(1—b)— Bb(1 - a)
a—b ’
(b) The six points thus determined form a complete quadrilateral.
(c) Prove that the equation of the plane of perspective may be written in

the form, S+ ab(e— d)SpaB+3 £ (1 - a)bedSBy8=0,
the determinant law of signs being obeyed.
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Ex. 12. Determine a parallelepiped, having its vertices on the four lines
joining the origin to the points 4, B, ¢ and D, and having its centre at the
origin.

(a) If _za+yB+zy+wd
. z+y+tetw
a parallelepiped having its centre at ¥ and its vertices on the lines pa, B, »c,
PD, has its vertices at the extremities of the vectors,

prz(a-p), pxy(B-p) pxzly—p) p+w(@-p)
_ (6) If a pair of edges are at right angles, the condition may be written in
either of the forms, SB/‘)//:S(I/S/ or Blg+y/2=a/2+ 8’2,
where, for brevity, o’ =z (a — p), ete.

(¢) The locus of a point p satisfying this condition is a quartic surface.

(d) If two pairs of edges are at right angles, the conditions may be
written as W=7 y?=§%

(¢) Tf the parallepiped is rectangular, the conditions are

a?=Q2=y2=8"

(f) The point, or points, satisfying these conditions are also given by

U(a—p) £ UB-p) £ Uly—p) £ UE-p)=0,
and it may be shown that this is the condition that
T(a—p)xT(B-p)£T(y -p) £ T(3-p)
should be a minimum.
(9) Another form of this condition is
SU.(p—B)p-7)(p-8)==8U.(p—a)p—y)(p—9)
=+SU.(p—a)(p—B)(p-9)
= +8U.(p-a)p-B)(p—7)

Ex. 13. Find the vector to a point P at which the faces of a tetrahedron.
subtend volumes whose ratios are given.

Ex, 14. Find a vector equation for determining a point  at which the
faces of a tetrahedron subtend solid angles whose sines are in a given ratio.

Ex. 15. What is the condition in terms of the lengths of the sides of a.
tetrahedron that two opposite edges should be at right angles to one another?

(@) If two pairs of opposite edges are at right angles, the third pair is also-
at right angles.

Ex. 16. The vectors e, 3 and y are coinitial. It is required to draw
through the extremity of o a plane which shall cut the vectors in points
forming a triangle of given species. Show that the problem may be reduced
to finding scalars y and z, so that

IT(yB —2y)=mT(zy — &) =0T (a~-y0),
where I, m and n are given scalars; and eliminate either y or z, so as to
obtain an equation in the uneliminated scalar.

Bx. 17. If the perpendiculars from the vertices of the tetrahedron ABcD-
intersect, and if the origin is at the points of intersection, show that

Saf3=8ay=Sad=8fy=8B8==Syd.
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Bx. 18. Given three points 4, B, ¢, show that the three equations
8(p-a)(B-7)=0, S(p—B)(y—®)=0, S(p=y)a-B)=0
represent a line which is the locus of the fourth vertex b of a tetrahedron
ABCD enjoying the property that perpendiculars from the vertices on the

opposite faces concur.
(a) Show that the point in which the line meets the plane of the triangle
ABC is the extremity of the vector,

Safy —aSa(f—v)—BSB(y ~a) —ySy(a— [3),

oH=7n=
! V(By+vya+aB)
and express this vector in the form,
_zatyB+zy
T ety+z

(b) Show that the line may be represented by
o VBy(t—S8By)+ Vya(t—Sya) + Vaf(t— Saf3)

Safy
Bx. 19, When the vector to a point P in the plane of ABc is expressed in
the form, N
_zatyB+zy
T xty+z

show that the ratios of z, ¥, and z are the ratios of the triangles PBc, POA, PAB.
(a) Hence, if upper and lower signs correspond,
pzaT(B—v)ﬂ: BT(y-a)=+vT(a—P)
TB-7)=T(y-a)+T(e-f)
are the vectors to the centres of the inscribed and escribed circles of the
triangle.

(b) Deduce the corresponding theorem for a tetrahedron, and find the
vectors to the centres of the inseribed and escribed spheres.

Bx. 20. Selecting any point U in the plane of three given points 4, B, ¢,
so0 that aa+bB+cy
oU=p=——g—t
a+b+ec
where a, b, ¢ are constant scalars ; the vector to any variable point in the
plane may be represented by

b

zaa+ybB+zcy
ra+yb+ze ’
x, y and z being the anharmonic coordinates of the point r.

(@) If 22412+ 22— 2yz —~ 2o — 20y =0, the locus of P is a conic touching the
sides of the triangle sBc in points which connect through U to the opposite
vertices.

() If yz+ 2z +ay=0, the locus of P is a conic circumscribing Asc, and the
tangents at the vertices intersect the opposite sides in points on the polar of
U with respect to the triangle ABc, or with respect to either conic.

(¢) The two conics have double contact, the polar of U being the chord of
contact, and the anharmonic coordinates of the points of contact being
1, o, w? and 1, 0% o where o is an algebraic imaginary cube root of unity.

(d) Given three scalars, u, v and w, discuss the arrangement of the six
points whose anharmonic coordinates are equal to these scalars taken in
different orders. Show that the six points lie on a conic. Examine the
three cases in which permutation of the scalars determines less than six
points.

0P=p=



CHAPTER VL

THE SPHERE.

ART. 41. The equation _
TEP=T(p—e)=CL, or p2—2Spe+62+a2=0 .......... (I)
requires the variable point P to remain at a constant distance a
from a fixed point E, and consequently represents a sphere of
radius a and of centre E.
The right line p=3-+{a meets the sphere in the points deter-
mined by the values of ¢ which satisfy
T(B—e+ta)=a, or T(B—e)*—a?—2S(B—e)a+1?Ta?=0; (1)
and the product of the intercepts between the point B and the
sphere is independent of a, being

Lt T2 =T(B—€)?—a% coveeririniininninnen. (111)
while the sum of the intercepts is
t,+t)Ta=28(B—e)Uq, cceereririnininnnnn. (xv)

if ¢, and ¢, are the roots of the quadratic (1L.). o,
The square of the chord cut off by the sphere is £ = 7 -
(tl—tﬂ)zTa%':4a2-4@V(3—e)Uo}, ................ (v.)
remembering that (SAu)2+ T (VAu)?=TA%?® (Art. 17), and accord-
ingly the line meets the sphere in real points, only if
TV(B—e)Ua=a,...ccc.cvevimviuiinnnn... (VL)
that is, if the perpendicular from the point E on the line is less
or equal to the radius of the sphere. For contact,
- TV(B—e)a=aTa; and TV(B—e)(p—B)=aT(p—B)...(vIiL)
represents the tangent cone from the point B, BP being a tangent

line. Since TVAu=TATu, the cone is real only when T(8—¢)=a.
The locus of the centres of the chords is derived from (1v.) by

putting % (t,+t,)a=p— B, and is given by

J.Q. D
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which represents a sphere on BE as diameter. For it expresses
that the projection of BE on BP is equal to BP, so that the angle

BPE is right.
Taking the harmonic mean of the vector intercepts to be p— 3,

we have by (1IL) and (1v.),
1, 1\1_ 2 | _ _ .
<t—l+t'2>‘(;—;_‘6, and S(p G)(IB €)+a -—0 ....... (IX.)
is the locus of its extremity—the polar plane of the point B.

ART. 42. Any two spheres,
p'Z—QSap—{—l:O, p2—2813p+’m=0, ............... (L)
intersect in the plane,
2S(a=PB)p=l—1: e, (11.)
and if P is any point on the second sphere and P’ any point in

this radical plane, the power of the first point P with respect to
the first sphere is (Art. 41 (11L.)),

Tp2+2Sap-l=28(a—,3)p—l+m=QS(a—B)(p—p'), ...(III.)

or twice the projection of PP’ on the line of centres into the
distance between the centres.
The spheres cut at an angle determined by

I+m—2Saf -
2~/{(Ta2+[')(T,82+m)}’ ................ .

since if @ and b are their radii, a?+b%—2ab cos 0 =T (a— B)2

For further investigation, the origin should be taken at the
intersection of the line of centres with the radical plane.

A variable sphere cuts two given spheres at constant angles,
prove that it cuts an infinite number of spheres at constant
amgles. Let the sphere (1.), determined by 8 and m, be the variable
sphere, and let it cut the spheres (, {) and (a’, I') at the angles 6
and @. Assume that it cuts the sphere (¢, I”) at the angle 6”.
Then the third of the equations,

l+m—28aB=2abeos0; I'+m—28dB=2a’bcost’;
U+m—2Sa"B=2a"bcos 0,
analogous to (1v.), must be equivalent to a linear combination of
the other two. Multiply by scalars, @, y and z; add and

separately equate to zero the coefficients of the variables, m, 8
and b, and

al+yl+2'=0; z+y+2=0; zat+yd+2a"'=0;
xa cos 8+ ya’ cos §'4-xa” cos §” =0.,

cos f=
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The first, second and third show that the sought sphere
(a”, I”) must be coaxial with the given spheres, and we have, in
fact, on elimination of z, ¥ and z,

=)+ a(l’ =1+ (I"=1)=0,
a’cos 8"(l—1U)+acos O(U'—1")+a’cos (1" =1)=0.
Substituting for a” its value, /(Ta”?+1"), the equation
08 0/ {TLa(l )+~ D+ L= Ly}
+acos O =1+ a’cos (1" —=1)=0
becomes a quadratic, which gives two values of I” for each value

of cos§”. One sphere only is cut at right angles because the
condition becomes linear in ”.

Ex. Reduce the equations of a pair of spheres to the form,
p?—2uSap+1=0; p*—2080p+{=0, where Ta=1,
(@) Prove that all spheres of the family obtained by giving various
values to w in p?—2uSap+1=0
intersect in a common circle.

(b) Examine the condition for the reality of the circle, and show that
whether real or imaginary, it lies in a real plane.

(¢) If the circle is imaginary, there are two real point spheres of the
family. Find them.

(d) The spheres of the doubly infinite family
p?—28Bp~1=0, SBu=0,
formed by giving all possible values to the vector 3, cut the spheres of the
family (a) at right angles.
ART. 43. Given any three spheres,
p?—28ap+1=0, p?—28Bp+m=0, p?—2Syp+n=0;...(1)
the radical planes of each pair intersect in the line,
28ap-—l=28ﬂp—’m=2s'yp-—’n; ............... (II.)
or p=4(IVBy+mVya+nVaB)(SaBy) ' +tV(By+ya+apB).(1IL)

If the origin is taken on this line, l=m=mn; and if it is taken
where the line intersects the plane of centres ABC, the equations
of the spheres may be reduced to the type,

pZ—QSKp—}-l:O, Sky=0, .(IV)

the vector v being fixed, but « being susceptible of various values.
The spheres of this family (1v.) of given radius («) have their
centres on a fixed ecircle,

Te=f(a2—=1), Ser=0.

. It is easy to verify that the radical axes of every three out of
four given spheres intersect in a point. This point is the radical
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centre of the four spheres, and is situated at the extremity of the

vector, IV(By+y5+36)
p=%ESaV(,3'y+'yS+6,3)’ ..................... (v.)

the fourth sphere being p®—2S8p+p=0.

It may be verified that if in this equation p and 8 are rendered
arbitrarily variable, we fall back on the radical axis of three spheres. If,
in addition, y and » are arbitrary, the same equation represents the radical
plane of two. For example, we may put 8=za +yB+zy, where z,  and 2
are arbitrary.

Ex. 1. Find the locus of the centre of a sphere cutting three spheres
orthogonally.

[Let & and p determine the sphere whose centre is sought, and let the
three spheres belong to the family (1v.). The condition l+p—288k=0
must be satisfied by three values of the vector . Hence p=—1, 8| v, and
the locus is the radical axis.]

Ex. 2. Find a sphere cutting four spheres orthogonally. ‘

Ex. 3. If four spheres are mutually orthogonal, their centres determine
a tetrahedron self-conjugate to a sphere.

[Let the spheres be referred to their radical centre. The conditions are
{=Saf=Say=S8ad=88y=838=Sy3, and the centres are conjugate in pairs
to the sphere p?=1.]

The Method of Imversion.

ART. 44, We have seen that
p"l=OP'1=OP=pl

represents a vector having its tensor reciprocal and its direction
opposite to the tensor and the direction of the vector p (Art. 16).
Hence more generally if

CP'=p' —y=—R¥p—v)t=—=R:.CP,....c...... (1)

P and P are inverse points with respect to the sphere, centre C
and radius R, for
Ucp’'=UcP, TcP'TCP= R2.

The inverse of the sphere T(p—a)=a is

R? a—vy Rt
T(y—a— """ )=a, T(a—+)2—2R?S" — L4 s =0a?;
<y ’ p—v> @ or Ta=y) p—y Tlo—v?

e (a—vy)R* \ _ alR?
or T(p 4 T(a—y)2—a2>_TT(a-—‘y)2—a2.”'.“".“(IL)

The symbol T prefixed to the scalar on the right is intended to
show that it is to be taken positively. Thus, to invert the given
sphere into a sphere of radius b, we have

aR? .
b= i—m according as T(a—y)> or <a,....(I1Ly
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or according as the centre of inversion lies outside or inside the
given sphere.
The inverse of a plane is a sphere through the centre of inver-
sion, and the inverse of a line 1s a circle. Thus
g ¢ v(-Z )8=0 )
—_—=a , Or ——ta— =0, oIV,
v, et Sy tamv)B (
represents a circle through the point C—the inverse of the line
p=a+1B.

Ex. 1. If any two vectors oA, oB have oa’, oB’ for their reciprocals,
then the right line o’8’ is parallel to the tangent op at the origin o, to the
circle 0oaB; and the two triangles, 0AB, oFA’, are inversely similar.
(Elements of Quaternions, Art. 259.)

Ex. 2. Invert the sphere, centre A and radius @, into the sphere centre
B and radius b.
_ (a—y) B2 aR? _
[Here B—7+T(a—y)2—a2’ T(a—'y)Z—(z?—ib’

and from these
+ab—Ba +ab
=»;‘ib_f, and m:m(T(a—B)2—(ﬂ:b—a)2).

There are two real positions for the centre, but there may be only one
positive value of R%]

Ex. 3. Invert a system of coaxial spheres into concentric spheres.

[A system of coaxial spheres p?—2uwSap+{=0 inverts into a system of
spheres having their centres on the line locus,

(wo—v)R?
B=Y= 1 gusyart

If this is independent of w, it is easy to see that y2-{=0, y| e, or
Y=o N2 -

The centre of the inverted spheres is +on/ —{ F3aR2: v/ —1.

Ex. 4. Prove that

xa, ¥ zy
a—s B-sty=s
z

¥ LY L F
a3t B8 y-5
represents a sphere through the four points 4, 8, c and p.
[Invert with respect to the point n.]

p=

Arr. 45. The following examples relating to a sphere and a tetrahedron
are easily solved by the formulae X. or xIL of Art. 38, or by the method of
Art. 39.

Ex. 1. Determine the sphere through 4, B, ¢ and p.

[The vector « to the centre is «=—}v'2ZAal=—-%3),"0? and the
squared radius is 2= —v'2la? — v 2 (T Aa?)]

Ex. 2. Given four spheres having their centres at A, B, ¢ and p, and

their radii equal to a, b, ¢, d, find their radical centre.
[1f o is the vector to the radical centre, and if A=(w —a)?+a? we have

w= 3o ZA(a2+a?), h=v"'Sl(o2+a?)+}r 2 (EN(a2+a?))]
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Ex. 3. Describe a sphere to cut four spheres orthogonally.

Ex. 4. Describe a sphere to cut four given spheres at given angles.

[Here there are four equations of the form (x ~ a)?+a?—2aR cos 6+ £*=0.
Multiplying by the scalars  and the vectors A and forming the sums, the
equations,

o(k2+ B2+ Sl(a2+ o) —2RZla cos H=0; 2kv+ZA(a?+a?)—2RZ\a cos §=0,

are obtained. Substitution for « in the first gives a quadraticin B, For
the origin at the radical centre, the equations are,

R2{(Z\a cos )2 +42} —2RvSla cos O+ hv?=0; kyv=RZ\acosf.]

Ex. 5. To invert four spheres into four others of given radii.
[If o, ¥, ¢, d' are the radii which the inverted spheres are required to
have, and if the vector ¢ terminates at the centre of inversion,

22— 280+ al+a?+ % R?=0. (Ex. 2 of last Article.)
Taking the origin at the radical centre,

v(L2+k)+R2E:}:Z,Z=O, 27)L+R22i0% A=0.

These lead to a quadratic in R? for each set of signs.]

Bx. 6. Find the equation of a sphere touching the four faces of a

tetrahedron.
[0=v+7E+TA; O=vk+rZ+aTA.]

Bx, 7. Find the condition that five points 4, B, ¢, D, E should lie on a

sphere.
[In the notation of Art. 39, p. 43, this is aa®+bB%+cy?i+ d& +ect=0), or

042(BCDE) — 0B?(ACDE) + 0c?(ABDE) — 0D%(ABCE) + OE?(ABCD) =0.]
Ex. 8. If five spheres are orthogonal to a sphere, prove that
P,(BCDE) — P, (ACDE) + P, (ABDE) -— P, (ABCE) + Px (ABCD) =0,

where A, B, ¢, D, E are centres of the spheres and where p,, Ps, P, Py, and Py
are the powers of any point with respect to the five spheres.

Ex. 9. If five spheres cut a sixth at the angles 6, 8, etc., prove that the
radius (R) of the sixth is given by the relation

3p, (BcDE)=2RZa cos §(BCDE),

p, being defined as in the last Example, and @, b, ¢, d, ¢ being the radii of
the five spheres.

Ex. 10. Find the equation of a sphere in anharmonic coordinates.
[Compare Art. 40, p. 43. The imaginary cone standing on the circle at
infinity is
Tp?=0, or Q=ZTa’a%?—23SafBabry=0,
and a sphere is Q+ZaxIiz=0.]

Ex. 11. Prove that the equation of the sphere circumscribing the
tetrahedron ABcD is in anharmeonic coordinates,

2T (a— B)*abzy=0.
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ART. 46. The product of the successive vector sides of a poly-
gon of odd order imscribed im a sphere is a tangential vector at
the imitial point of the polygon; and if the muwmber of sides is
even, the product 18 a quaternion whose vector part is parallel to
the vector radius to the initial point. .

The centre of the sphere being 0, and A, A, being successive
vertices, the isosceles triangle A,A,0 is inversely similar to
A,A,0, and therefore (Art. 18, p. 14),

A0 A0 1 1
Tt W 04y=— A 04y 1
Thus, if O0A,=qa,, OA,=a, etc, A A, =y, AA;=1, etc,
ay=—yiay1"h @= =YYy 1=ty TYe” 1, ete.;
and generally, the polygon being closed so that an1=a;,
a;=(—=)*qa,q Y, Where q=r1ynyn_1.-c YY1 seeereeee (1)
For an odd number of sides,
ga, +a,9=0, or a;Sq+8Sa;Vg=0, or Sq=0, Vg_La; ...(IL)
and for an even number,

qa,—a,9=0, or V.aq,Vg=0, .or Vq[ap.......... (L)

In the first case (n odd), the product is a vector, and is perpen-
dicular to a,, or parallel to a tangent at A;. In the second case
(n even), the product is a quaternion having its vector part
parallel to a,.

In connection with this article and its examples, Art. 296 of
the Elements of Quaternions should be consulted.

Ex. 1. The equation of the sphere through four given points 4, 8, ¢, D
may be written in the form

S(p=a)(a—BUB~)(y =)@~ p)=0.
Fx. 2. The normal at the point P on this sphere is parallel to
V(p-a)a— BB~ ~p);

and the vector @ being variable,

S@-p)p-a)a—B)(B-7)y~p)=0

is the equation of the tangent plane at p.

Fx. 3. The equation of the circle aBc is

V{p—a)a—B)YB—y)y—p)=0,

and the tangent to the circle at the point » is

V(@ - p)(p— x)(a— B)B~p)=0.

[The vector part of a product of an even number of coplanar vectors is
perpendicular to their plane, being a product of half the number of coplanar
quaternions. Therefore when the points are coplanar the expression for the
normal vector in Ex. 2 must vanish, as this vector cannot be perpendicular
to the plane. The equation is also susceptible of geometrical interpretation.]
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Ex. 4. The product of four successive vector sides of a quadrilateral
inscribed to a circle is a positive or negative scalar according as the quadri-
lateral is crossed or uncrossed.

[Use the relation U. 2—2: iU%, which asserts that the angles aBc, Apc

- are equal or supplementary.)

Ex. 5. The “anharmonic function of four points in space” being defined
by the equation
(ABCD) s
"B paA’
examine the nature of this quaternion when the four points are concyeclic.

Ex. 6. Prove that the anharmonic functions of any four points in space
satisfy the relations

(aBcD)+(AcBD)=1, (aBCD).(ADCB)=1;

and that (aBcp)=K %,

where B, ¢’ and p’ are the inverse points of B, ¢ and » with respect to the

point A,
[Note that ™ — B-'=a"1.(8-a)371]

Ex. 7. If (oaBc)= —1, prove that oB~'=%(0oa~*+oc™?).

Ex. 8. Inscribe a polygon to a sphere, given the directions of the sides
of the polygon.

[Here Ugq is given, ¢ denoting the quaternion in the text; and (1) and
(111.) show that the vector to the first corner is | VUg, or else || + VUq.]

Ex. 9. TFor the gauche quadrilateral oapc, which may always be con-
ceived to be inscribed in a determined sphere, we may say that the angle
of the quaternion product, ~(oa.AB.Bc.co), is equal to the angle of the
lunule, bounded by the two arcs of small circles 0AR, ocB; with the same
construction for the angle of the anharmonic £ (0ABc), or £ (0A : AB. BC : cO).
(Elements, Art. 296 (15).)

Ex. 10. Let ascp be any four points in a plane or in space, connected by
four circles, each passing through three of the points ; then, not only is the
angle at a, between the arcs ABc, ADc, equal to the angle at ¢, between cpa
and oBa, but also it is equal to the angle at B, between the two other arcs
Bep and BAD, and to the angle at D, between the arcs paB, pcB.  (Klements,
Art. 296 (18).)

Ex. 11. The vector part of the product of four successive sides of a
gauche quadrilateral inscribed in a sphere is equal to the diameter drawn
to the initial point of the polygon, multiplied by the sextuple volume of the
pyramid, which its four points determine. (Elements, Art. 296 (43).)

ART. 47. To inscribe a polygon in a sphere so that its sides
may pass through given points.

Let the unit of length be selected equal to the radius of the
sphere. Let the centre be taken as origin, and let p, p;, py, -
pa( = p) be the vectors to the vertices, while 3, 8, ... 8, are the
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vectors to the fixed points. The rectangle under the segments of
the chords through 3, is

(p—ﬂl)(pl—61)=1+,812; .................... (I)
1 +q, .
so that =-’81p+ =DPTh ¢, = L q=1. .......(IL
. P B—p Pi—qup P1=By & (1)
Again,
/82P1+1 2P2P+92 :
eyt ah S——y QR O NN, 1f = + , = -_— ) 111
By—pr ( )Pg—%p Pe=LBePr+ 41 $=Pq1—py; (1IL)
and it is easy to see that, in general,
—( — mme'l"Qm if —_ —f — Ym-1
Pm ( )Pm—QmP 1L P, ﬁum-l (=) Qm-1,1“.(lv.)
) + Gm=BmGm-1+(—= )" Pm-1.
Finally, p=(=)"PPTL it pmp Du=D, qu=0. ceerrrerer.. v,
ma)’p()p_qplp P Pa=D, ¢n=¢ (v)

Two cases now arise according as n is odd or even. In the
first place, if » is odd, remembering that p?= —1,

pp+pp=pip—9=pp+pg); or pSp+Spp=p(pSq+Spq);
or, separating the scalar and the vector parts,
Spp+Sq¢=0 and Spqg—Sp=0. ............... (v1)
Introducing the imaginary of algebra, these may be combined
into the single relation,
S(p+a =1)(q+N ~1p)=0. cccorrrrranne. (viL)

The equations (VL) give a line locus for p which intersects the
sphere in two points—real or imaginary—which satisfy the
conditions.

In the second place, if n is even,

pp—pp=pIp+q=p(qp—pg); or V.pVp=pV.Vqp.
Adding to each side 2 =Spp, we have

VoVg+Vp=p-lz=—ap; and this gives SVpVg= —aSpVq
on operating by SVg. Hence,
p(Vq+a)=—Vp—z-'SVpVy,
as we see by adding SpVq to each side. Thus,

p= —@ﬁ—mfs}iq and 2t+2(TVqg?-TVp:)—(SVpVq)*=0,(vIiIL)
as appears on taking the tensor, remembering that Tp?=1. This
quadratic in 22 has one negative root. The other root is positive,
and there are thus two real values for z, and two real points
satisfying the conditions.
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We have now to determine p and q. Multiply p,, in equation
(1v.) by &/ —1 and add it to g, and

qm+ ~/:“—lpm:(ﬁm"‘(— )m_1~/__:—1)(%n—1+~/__—110m—1)
=(Bu+(— )m‘\/_ 1)(qm—1+‘\/_ 1P _1)-
This gives at once, on referring to (i),
g+~ =1p=(Ba+(=)'"/ =D(Bus+ (= )1/ 1))

o Byt (= =1)(B = =)/ =1 J-;...(Ix,)

and the real and imaginary parts of this product are g and p.

A quaternion of the form q+a/—1. p is called by Hamilton a
bi-quaternion. (Compare Art. 22, p. 20.)

Ex. Show that in the notation of this article
Tg* - Tp?=(-y*1 (B2 +1)(Ba-i?+1) ... (B2 +1); SgKp=0.

[Multiply ¢+~ —1p into Kg++/—1Kp and separate the real and the
imaginary parts.]

EXAMPLES TO CHAPTER VI

Ex. 1. The sphere which has its centre at the origin, and has the vector
04, or a, with a length Ta=aq, for one of its radii, may be represented by
any one of the following equations :

C_pP. opP-a 20 2p ( P p)
-=Kt; 8t—=0; S=—=1; S—"=1; T{8E Ey=1,
P a p+a pt+a pta Sa+va L
T(p—ca)=T(cp—a),
which are transformations one of the other, and each of which exhibits some
geometrical property of the surface.

Ex. 2. The circle which has its centre at the origin, which lies in the
plane Sap=0, and which has Ta for its radius, is represented by the equation

-

Ex. 3. If ¢ is a variable parameter, in absolute magnitude not greater
than unity, the equations

2
sf=y, (V"—’) =p-1,
a a
represent a system of circles which generate a sphere.

Ex. 4. The equation of the sphere through the four points o, a, B, ¢ may
be written in the forms
S(oa.AB.BC.CP.PO)=0;
a®SPyp+ B*8yap+y*Safp=p"Safy ;
S(B —a )y ~a)(pt - a ) =0.
Ex. 5. If we project the variable point  of a sphere into points A", 8, ¢

on the three given chords oa, 0B, oc by three planes through that point p
parallel to the planes Boc, coa, 408, we shall have the equation

0P2=0A.0A +0B. OB +o0cC.0C
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Ex. 6. The expression*
p=ritjki—k=t or p=rktRE,

in which 7 is a given scalar, ¢, j, £ mutually rectangular unit vectors, while
s and ¢ are parameters, represents a sphere concentric with the origin.
The expression may also be put under the form

p=rV B4 %V 4%
and it may be expanded as follows :
p=7r{(¢costr+jsin tr)sin sz + kcos sw}.

(d) Show how to establish the first form of the expression by the
properties of conical rotations.

Ex. 7. Show that the equation

(,lfi[%:qy: -1,

in which w is a real scalar capable of receiving any value consistent with the
reality of the vector p, represents the portion of the plane S{p-a)B=0
included within the sphere 1T'(p —a)=Tg.

Ex. 8. The equationt T(w+p)=1,
in which p is a real variable vector and w a real variable scalar, represents
the region enclosed by the sphere Tp=1.

Ex. 9. A sphere passes through the intersection of the planes SAp=0,
Sup=0, Svp=0, which cut off caps the sum of whose areas is equal to 2ra?
Show that the locus of the centre is represented by

3Tp?+Tp.S(UAL+Up+Ur)p=a’

Ex. 10. The centre of a sphere of constant radius a describes a circle of
radius b concentric with the origin and in the plane Sap=0, Ta=1. The
equation of the surface generated may be written

T(+£bU.a WVap-p)=a;

or 2bTVap= = (Tp?+ b~ a?);
or 4b2(Sap)2 =4bTp? - (TpZ 42— a2)2 ;
or 407Tp2 — 46¥(Sap) =(Tp? - b2+ a2)?;
or SU. P_ja_(af—i);;’ _.0b.
Pra(e?-bE T a
or p=+bU.a""Var+aUr (7 a variable vector).

(2) Taking B and y, two auxiliary unit-vectors perpendicular to one
another and to a, show that

a*Tp? — b2(Sap)? =a?(Syp)*+Sp(aB + aNbT=a?) Sp(af — o NbBE—al),
and prove that each of the planes
Sp(af+avbi=a2)=0
touches the surface in two points and cuts it in a pair of circles.

* Examples 1-6 are taken from Hamilton’s Elements of Quaternions.

t This and the last example are to be found in Hamilton’s Lectures on
Quaternions, Art. 679.
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Ex. 11. If p and ¢ are variable quaternions, while o and 3 are given
vectors, show that

op=p=pap~+¢f3g~!
represents the shell included between the spheres
Tp=Ta+TB, Tp=T(Ta-TR).

(a) If y is a third given vector, and if @ and b are given scalars, the
point P terminates on the circle of intersection of the spheres

T(ap-7)=T(a-b)B, T(p-7y)=T(a~b)a,
when the quaternions p and ¢ are connected by the relation
apap~'+bgBg~t=y.
(6) When the relation
Vy(apap™ +bgBq™)=0
connects p and ¢, the locus of p is the surface
4(Spy)*{abTp?+(a— b)(aTa?—bT %)} =Ty*{(a+b)Tp2+ (2 — b)(To2 - T32)}2
(¢) If the condition
Sy(apap~+bgBg~1)=0
is satisfied, the point P must render the expression
4(Spy)*{abTp?+(a — b)(aTa?—bTH%);
+(a —b)*Ty*(Tpt+ Tat+ TB* - 2Ta?B2 - 2T B%? — 2Tp%a?),
less than zero.

Ex. 12. The bars B, Bc and cp are connected by universal joints at
B and ¢, and also to two fixed points A and p. If Pis a point fixed in Bc,
and if we write

pP=AP=AB+uBC, P '=PD=uBC+cCD, u+u'=1,
where « is a given scalar, and also
AB=pap~!, Be=¢fB¢7', cp=ryr-!, pA=3],

where «, 3, y, 8 are given vectors and p, ¢ and » variable quaternions,
prove that

By P E =) e By

Py = QUM’VPPI H

¢ being a scalar, and hence show that the inequality

1= TP (Pt w32 - %) — pu(p? +w?B3 - y?)}
- 2T uw' Vpp'

determines the region within which the point » must lie.

(a) If the bar Bc remains parallel to the fixed vector §, the locus of p is
the intersection of the spheres

(p—uB)=a? (p'—wB)y=7y%
() In this case the locus of the bar Bc is the cylinder

[o-prov sy (5 (g 1T

(¢) When the quadrilateral aBcp is coplanar and when the motion is
confined to the plane aBcp, find equations of the form

p=rtatve, f(x, y)=0,
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for the path of any ‘foint of a plane lamina attached to Bc, ¢ being a constant
unit-vector perpendicular to the plane arcp, and f(z, y) being a scalar
function of » and .
Ex. 13. Solve the equation
1 1 1 1

(a) If p, o/, B and ¥’ are the vectors from the point D, the extremity of
the vector &, to the inverses of the extremities of p, a, 8 and y with respect

to D, 1 +_,},, o 1
Pl_a/ p/_BI pl—yl
Hence deduce the relations

0.

pF—a p=y y-d
(b) Solve similarly the quaternion equation

1,111

by assuming
(g-d)g' —d)y=(a-d) @ —d)=(b-d)(¥' —d)=(¢c-d)(c—d)=L
(Robert Russell.)



CHAPTER VIL
DIFFERENTIATION.

ART. 48. The equation
OP=p=0¢(f), cecrivririiirririnrrannannnn. )

in which a variable vector p is given as a function of a variable
scalar t, represents a curve in space, it being possible in general
to pass from one point P to another point P’ on the locus, only in
one definite way—namely, through the series of points deter-
mined by the variation of the parameter from ¢ to ¢'.

The chord PP’ of the curve is

P = = p= ()= h(E)y ervrrrrernrrrranens. (1L.)

and for the sake of argument we shall suppose that the para-
meter ¢ represents the time, so that P is the position of a moving
point at the time £, and P’ its position at the time ¢.

Q
q
//’/
o Q
R
' F1e. 23.
" , PP tYy—o(t
ertlng PQ =t—,—_.—t=¢—(tl,_%(—), ..................... (III.)

it is apparent that had the point passed from P to ¥/, in the time
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t’—t, not along the curve and with varying velocity, but along
the chord and with uniform velocity, and that had 1t continued
to move uniformly along the production of the chord, it would
have reached the point Q" in unit time. In a similar manner the
point Q" would have been reached in unit time had the point
moved uniformly along the chord PP”in the time in which it had
described the curve and had its motion been continued along the
chord without alteration. In the limit PQ represents rigorously
the velocity at the point P, in magnitude and direction, for Q 1s
the position the point would have reached in unit time had it
left the curve at the point P, preserving unchanged the velocity
it actually possessed at that point. The equations

r=t t—t

h=0 h ) (IV)
- ﬁ;,:lf((p <t+%> - ¢(t)>

are equivalent modes of expressing the limit to which we
advance ; the third being perhaps in closest agreement with the
illustration. It is usual to write

de(t)
PQ:-‘(’;T =) e e, v.)
as an abbreviation for the limit.

The vector ¢'(t) is the derivative, the derived or the differential
coefficient of the vector function ¢(¢) of the scalar ¢, and the
differential of ¢(t) corresponding to any scalar differential
df of ¢ is

d.p(®)=lim n(¢(t+%) —¢(t)> =@ (t).dt. (V1)

This is a vector tangential to the curve and of length propor-
tional to the differential d¢ which may be large or small.

If t is the arc of the curve, the vector ¢'(¢) is of unit length,
for in this case we may consider ¢ to represent the time for unit
and uniform velocity along the curve.

If ¢'(t)=0, the extremity of the vector OP=¢(t) is a cusp or
stationary point.

Ex. 1. The curve p=acost+Bsint
represents an ellipse of which o and 3 are conjugate radii.

[The vector p’=((%)= —asiné+Bcost=acos (72—r+t> + Bsin <g+t> is the
radius conjugate to p.]

Ex. 2. The parallelogram determined by conjugate radii of an ellipse is
constant in area.

[Vep'=Vaf.]
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Ex. 3. How is the point at the extremity of the vector

808 $(@t+¢), Hsin(t+2)
cosk(t—¢) " cosg(t-7)

related to the points ¢ and ¢ on the ellipse ?

Bx. 4. The curve p=a?+28t+7 is the trajectory of a point moving
with uniform acceleration.

Bx. 5. What is the curve
1422

P=or—n

t
1
+283 Tk
Investigate its properties.
Ex. 6. A helix is represented by
p=acost+ Bsinz+yt,
the vectors o, B and y being mutually rectangular, and the tensors of
a and @3 being equal. Determine all particulars.
Bx. 7. A conic is represented by the equation
_ a4 2Bt +y
P=aP+obt+c
Its centre is at the extremity of the vector
_ac—2Bb+ya
T 2(ac—0?)
[The curve meets an arbitrary plane in two points. Find the pole of a
chord, and in particular of the chord at infinity.]

Ex. 8. The equation VpaVBp=(VafB)? .
represents a plane curve—a hyperbola of which a and 3 are the asymptotes.
Px. 9. Write the equation of the conic of Ex. 7 in a vector form

independent of the parameter.

ART. 49. A vector function of two parameters, ¢ and w,

P=¢(t, W), cerieniiiiii (1)
represents a surface. It may be regarded as generated by the
family of curves w=constant, ¢ variable; or by the family

t =const.
In strict analogy with Art. 48, (vL) we have

dp=de¢(t, u)="111=rg nzwmn[¢<t+q~71—®dt, u+%du)—¢(t, u)]l

) (1)
=lim }Tg[¢(t+hdt’ w+gdu)—¢(t, u)] J

h=0, g=0
where dt and du are any scalars. It is evident that this expres-
sion is linear with respect to dt and du, so that we may write

, fo) o) .
dp=dp(t,w)=¢ i+, du="2 . at+22 du........(m)
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The derived vectors ¢'(t, u) and ¢ (¢, u) are tangential respec-
tively to the curves u=const. and ¢=const. at the point ¢, ; and

more generally the vector ¢'di+¢du is tangential to the
surface. .
The equation of the tangent plane to the surface is
S(p—¢)p'e,=0, or S(p—¢=0, if v||Vg'¢, .......(IV.)
and the vector v is normal to the surface. The equation of the
normal is

V(p—g)V§'$,=0, or V(p— =0, or p=g+aw. ....(V.)

Ex. 1. If ¢(¢) is a function of a single parameter, the equation
p=o@)+ud'(?)

represents a developable surface.
[This surface is generated by the tan%ent lines to the curve p=d(?).

The normal vector 18 V(¢'+ud").d" or ¢/, and is independent of u.
The tangent plane is S(p — ¢ —ugd) V¢p'dp"=0, or S(p - ¢)¢$'¢p”"=0, and as this
is independent of u, it touches the surface all along the generator determined
by ¢. Conceive the tangent plane to roll over the surface and the successive
generators to become attached to it, the surface will be unfolded or developed

in the moving plane.]

Ex. 2, The equation
p=(t)+ua,
in which « is a constant vector, represents a cylinder standing on the curve
p=¢(?) and having its generators parallel to a. The equation
p=udp(t)+a
represents a cone standing on the same curve and having its vertex at the
extremity of a.
Ex. 3. Find the locus of a line joining corresponding points on two
homographically divided lines AB and cp.
. attB+sly+tmd) .. o+t | ly+imd
[The surface is p= T+ t+s(+tm) if p= 50 P~ ixom ' the
homographically divided lines. This is a hyperboloid of one sheet.]
Ex. 4. Show that the variable line determines homographic divisions on
the lines Ac and Bp.
Ex. 5. Find the scalar equation of the locus of Exampie 3, and show
that it may be reduced to the form
XY=2W,
where X, ¥, Zand W are planes.

dﬂx. 6. Find the locus of a line similarly dividing two given lines AB
and cp.

ART. 50. The equation

P=¢( U, V), coviiiiiiiniiii (1)

in which ¢, w and v are variable parameters, may at pleasure be
JQ. E
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regarded as determining (L) a singly infinite family of surfaces,
for example, the surfaces found by assigning various but constant
values to v; (IL) a doubly infinite family of curves, for example,
t variable, % and v constant; (IIL) any point in space, for we can
in general find one or more sets of values of ¢, u, v corresponding
to an arbitrary vector p. The scalars ¢, w, v are curvilinear
coordinates of the extremity of the vector p.

Differential of a quaternion function.

ART. 51. The differential of a quaternion function of a
quaternion is defined by the equation

d. F(q):li”rilwn{ﬁ'<q+(%q) —Fq} e (C ) NN 8

or d.Fg)=lim 7 {F(q+hdp)—Fg}=f(dq).

a definition in complete agreement with the results of Art. 48.

The function f(dq) is & linear and distributive fumction of
the differential dg, while it also in general involves the quaternion
q in its constitution. To prove this proposition, observe that if
r and 8 are any two quaternions,

forto)=tim of H(g+72%) g}

i {0 ) K+ ) 50+ 2) -1
+

A
—tim g+ F) - g+ )} +iim oo+ 1) - o

=i =w'n{F<q +2) - F(q)} + 1112waz{ Pg+2)- Fq},
or simply F@E+8)=F(r)+F(8) corereeriiiienniciann. (i)
As a corollary, F@P)=af (@), i, (11L.)

if z is any scalar.
As an example,

. dg\? . ” dg  d dqg)?
d.g¢?=lim n{(q+%q> —q2}=hm n{q-+q.%q+q—qu+(n—q2)—q2}

n=w n=w

2
—_-lim{q .dg+dg. q+dq },

n=w n

and thus d.q?=q.dg+dq . q. cooiniirinienee . (IVY)
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There is a notable difference between the differential of a
function of a single scalar and a function of a quaternion, which
is clearly illustrated by this example. In general, from a differ-
ential of a function of a single scalar d.F(z), we can form a
dF(x)

dz ’

d.ax? d.g?

dz. Thus, —cim—=2x, but dqq =q+dg.q.dg"! is not indepen-

differential coefficient which is absolutely independent of

dent of dg. And this, which is a consequence of the non-
commutative law of multiplication, is really quite in keeping
with the ordinary theory, for if F(z, y) is a function of two
independent scalars 2 and y, we cannot form a complete
oF . OF
-azdx+@dy, where dz
and dy are arbitrary, though we ean of course form the partial
differential coefficients %’ and gg We must remember that a
quaternion is a function of four numbers, and that a differential
dq is susceptible of a quadruply infinite system of values.
As a second example,

d.gl==q"1.dg.q Y coeeerrriernrnann, (v)
-1
for d.¢'=lim n{<q+%dq> —q'l}

=lim n. (q+%dq>_l{l-—<q+%ldq> q—1}

n=o00

differential coefficient from d.F(zy)=

=lir=rlm<q+%dq)—l .dq.q-1.

Ex. 1. Prove that
d.S¢g=8dg, dV¢g=Vdg, dKq¢=Kdg.
[Note that these symbols are distributive, or that
S(g+n-tdg)=Sq +n-18dq.]
Ex. 2. If v is a vector function of a variable vector p, and if dv=cdp

show that ¢dp is a linear and distributive vector function of d¢, so that for

any pair of vectors ¢(a + B)=¢(a)+ H(B).
This is a particular case of (1r.). Fuller details will be found in the
following chapter.]

ART. 52. The differential of a function F(q, 7, s,...) of any
number of quaternions is the sum of the differentials with
respect to each separately, or

d.F(q, v s..)=d,.F(q,75..)+d,. F(q, 78 .. )+etc, ...(L)
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where d,. F(g, 7, 3, ...) denotes the differential of the function on
the supposition that ¢ alone is variable. We may write

d.F(q,78,...)
~lim n{F<q+91—%dq, r4idr, s+ ds)=F(gm, s,...)},(u.)

and this, by the process of the last article, leads at once to (L).
Thus,
d.gr=dq.r+q.dr,
d.qq'=0=dq.q'+q.d.q"}, d.¢g"'=—q'.dg. gL

Generally in any product of variable quaternions, the rule is to
differentiate each quaternion in the position it occupies.

Bx. 1. Differentiate »=agbgc, where ¢ is variable.
Ex. 2. Differentiate (¢7)2 and ¢%?2, where g and r are both variable.

ART. 53. The differentials of the functions Sq, V¢, Kq, Ug,
Tq, UVg, ete., of a quaternion are naturally of importance. We
have already stated that

dSq=S8dgq, dVg=Vdg, dKg=Kdg, ............... (8]

and these results are immediate consequences of the distributive
character of the symbols, S, V, K.

Sinee (Art. 17, p. 12)

Tq?=qKgq, we have 2Tq.dTq=dg.Kqg+q.Kdg=2SdgKg
(compare Ex. 6, Art. 20, p. 15), and since Kg=Tq(Ug)"?, the
differential of Tq is

dg dTq dg
Tg=8 - =S .
dTq SUq’ or Ty Sq (1L.)

Further, since

g=Tq.Uq, and dg=dTq.Uqg+Tq.dUq,
we have on division by g,

dg dTq  dUgq
e IIL
7 = Tq T Ug (1)
dUgq dg
and therefore by (IL), —==2=V ., i Iv.
y (L), 74 7 (v.)

In particular for vectors,
dTp?= —d. p?= —28pdp=2Tp*Sp~1dp
and dp=Tp.dUp+ Up.dTp, and therefore,
dTp _ ) dp dUp_ Vv dp

To " p” Up " p (v
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dUq_,  gdUe_,

T ]
he relations S Tq Ty

0, S ceeerenernonannnses( VL)

are worthy of notice.

Ex. 1. Resolve dp into components along and perpendicular to p.
2u
Ex. 2. If p=ra™ 3, where Ta=TB=1, Sa8=0, and where the scalars
r and u alone vary, show that

v _od, s,
P P

(@) Prove generally that TV .dpp~! is the differential of the angle swept
out by the varying vector op=p,

. Bx. 3. If p and p’ are inverse points, the origin being the centre of
inversion, and if dp and d’p are any two differentials of p, and dp’ and d'p’
the corresponding differentials of p’, prove that

and interpret the meaning of this relation.

Ex. 4. Compare an element of vector area with the corresponding
element into which it is changed by inversion. )

[The elements are Vdpd'p and R*Tp~4. p~1Vdpd'p. p.]

Ex. 5. Prove that Vdg

(2) dUVg=V Vg

.Uvy.
(b AVUq=V (v%‘l. Ug)-
dgq
asug=s(v ug).
(©) q'( 7 q)

@ dig=S (U?dgf&).
Ex. 6. The vector e being constant, prove that
d.qog~t=2V.Vdgq'.qag1=2¢(V.Vg-ldg.a)g~
Ex. 7. Prove that
do*=dx (log‘ Ta +7§r Ua) a%,
where a is a constant vector and z a variable scalar ; and that

da":xsgg. a"+Vd-—a. Va?,
a a

where 2 is constant and e variable.

Arr. 54. If P is any scalar function of a variable vector P
a differential of P is connected with the corresponding differential
of p by a relation of the form

dP=—S8udp, ceevreenrninannn ceerenees wo(L)
the vector v being a function of p but independent of dp.
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The rate of variation of P along any direction o (Ta=1), may
be written in the form
doP=—=Sva, ccoceeiniiiiiiiiiiiinain (1)

it being understood that the suffix a attached to d signifies that
the corresponding differential of p is

dp=a. corivniiin (111.)

This rate of variation as expressed by (L) is the projection of
the vector v along the vector a, and consequently the rate of
variation of P is maximum along the vector » being then equal
to Ty, while it is zero along any direction normal to v.

Having given the variations of P along three non-coplanar
directions, or what is equivalent, having given the differentials
dP, d'P and d"P of P corresponding to three non-coplanar
differentials dp, d'p and d”p of p, we can determine the vector .
We have in fact

dP=—Sudp, d'P=-8ud'p, d"P=—Sudp, .......IV.)
and by the fundamental formula of Art. 26, p. 24, we find

_ _Vd'pd"p.dP+Vd"pdp.d'P+Vdpd'p.d"P )

— Sdpd,Pd’,p s aacsee -

Thus it appears that the vector v is derived from P by means
of the differentiating operator
_Vd'pd"p.d+Vd’'pdp.d +Vdpd'p.d"

Sdpd,pdﬂp ’
in which dp, d’p and d"p are any three non-coplanar differentials

of p, and in which d, d" and d” are the corresponding symbols of
differentiation.

V=

Ex. 1. Prove that VSap=—q,
Vp?=~2p,
VTp=+TUp,

VIVep=+UVap.a,
VI(p-a)'=~U(p~a). T(p-a)™
{These follow from the relation dP= —SdpUPL.]

Ex. 2. Show that
SaV.Tp 1= —8ap.Tp™3,
SBVSaV . Tp1=38apSBp. Tp~?+8af. Tp?
8yVSBVSaV. Tp~ 1= - 3. 58ap8BpSyp. Tp~7 —~328BySap. Tp~>.

ART. 65. The form of the expression found in the last article
for VP suggests a new view of the subject which is applicable
in the general case when P is a vector or even a quaternion
function of p. Suppose a parallelepiped constructed having its
edges equal to any three vectors dp, d’p and d"p, and having its
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centre at the extremity of p. If we suppose the vectors arranged
in positive order of rotation (compare Art. 24), Vd'pd’p is the
outwardly directed vector area of the face having its centre at
the extremity of p+3dp; and —Vd'pd”p is likewise the outwardly
directed area of the face, centre p—1dp. Also —Sdpd'pd’p 18
the volume of the parallelepiped.

Let F(p) be any function of p, scalar, vector or quaternion,
then the sum of the products of the outwardly directed vector
faces into the value of F(p) at their middle points is

Vad'pd”p. Fip + 3dp) + Vd"pdp. F(p+3d'p) + Vdpd'p. F(p+ 3d’p)
~Vd'pd’p. F(p - 1dp) ~Vd"pdp. F(p ~1d'p) - Vdpd'p. F(p—4d"p), (1)
and the quotient of this sum by the volume of the parallelepiped is

IVd'pd"p. {(F(p+3dp)—F(p—3dp)} @)
—-Sd pd/ pd" 0 e eeerereeaaas .

Each edge being diminished in the ratio %o’ the quotient becomes

9 7 " ]- ].
n-23Vd pC p{F<p + %dp> -_ F(p - m dp)}
-n- 3Sdpd'pd”p
So that when n increases without limit, or when the parallele-

¢ eeerenn(IIL)

. 1, " . ..
piped whose edges are ,;lidp, q—%d P, }%d p decreases without limit,
the limiting value of the quotient (111.) is (compare Art. 51 1)

T 1 1
. SVd'pdp. ’)’L{F(p +2ndp> F(p - 2ndp)}
A= Sdpd’pd”p
_ EVd'pd’p.dFp _
= ——-———Sdpd,pd,,p =V. Fp. .................. (IV.)
Thus V. F(p) is the limit of the ratio which the sum of the
products of the outwardly directed faces of a parallelepiped into
the mean values of F(p) over the faces bears to the volume of
the parallelepiped. And the veetors dp, d'p, d’p being arbitrary,
the result is independent of the shape of the parallelepiped.
Take the case in which F(p) is a vector function (¢) of p, and
consider separately the scalar and the vector parts of V.o The
scalar part is the limit of the ratio which the sum of the scalar
products of ¢ into the outwardly directed elements of the sur-
face—or which the sum of the inwardly directed normal com-
ponents of ¢ into the corresponding area*—or which the surface

* Remember that Saf is minus the length of one vector into the projection of
the other upon it.
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integral of the inward normal component of s—bears to the
volume. Thus if o represents the flux of a fluid, SVe is the rate
per unit volume at which the amount of the fluid is increasing
at the point in unit time. In other words SV is the rate of
increase of the density at the point. If o is the wvelocity of a
fluid and ¢ the density, co is the flux, or the mass of the fluid
that crosses unit area normal to ¢ in unit time, and SV . (co) is

the rate of increase of density at the point, or Z—g Thus

fe,
a—j:SV(ccr). .............................. (v)

For an incompressible fluid, ¢ is constant and SVe is zero.

In like manner, V.Ves is the limit of the ratio borne to the
volume by the integral over the surface of the vector product
V.Uv.o.dd4, where Uy is the outwardly directed unit vector
along the normal and d4 the scalar element of area, or where
UwdA4 is the outwardly directed vector element of area.

Since it has appeared that these results are independent of
the shape of the parallelepiped, it follows that they are true for
any closed surface formed of a single sheet, and we have

lim E%’?) = V.Fp), covveneiininiininnn (vi)

where dv is an outwardly directed element of vector area of the
surface, and where v is the volume, the limit being arrived at
when the surface becomes indefinitely small.

ART. 56. Towards further elucidation of the operator V, con-
sider the analogous integral taken round the vector sides of a
parallelogram, having its centre at the extremity of the vector p.

dp

p

. Fie. 24.
Circuiting in the positive direction and forming the product of
the vector sides into the corresponding values of F(p) at their
middle points, the sum is

dp.F(p—3d'p)+d’p. F(p+1dp)—dpF(p+3d'p)—d'pF(p—Ldp).
Collecting terms and dividing by the area of the parallelogram,
the result is

d'p. {(F(p+3dp)— F(p—34dp)i —dp{F(p+3d'p)— F(p—id'p);

' TVded'p ’
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Now let the parallelogram be indefinitely diminished by replacing
dp and d’p by %dp and ,;lt—d’p, and we have in the limit,

T
Jm =TTV a0
_dp.dFp—dp.dFp (1)
TVdpd'p

But this is equal to
{V.Vdpd p(Vd'pd"p.d. +Vd"pdp.d". +Vdpd'p.d”.)} Fp
—Sdpd’pd”pTVdpd'p
because V(Vdpd'p. Vd'pd”p)= —d'pSdpd’pd”p, ete., so that the
integral is :

V(Vdpd'p. V)
TVdpdp
if Uy=UVdpdp is the normal to the area about which the
direction of circuiting is positive.
As in the last article, we have for any plane closed curve
without loops,

. Fp=V(Uy V). Fp (II)

lim MPTF(PL V(U V). F(p), wovveeemne ()

dp being now a vector element of arc of the curve and 4 being
its scalar area.
In particular for a vector function (o) of p, we have separately

lim _[Sdpa- _[Vdpa'

=S(VUW.¢), lim ——=V(VUiV.gq)...(IV.)

It is obv1ous on using the expanded form of V that we may
write

S(VUW . 5)=S(UrVVs)=SUVe, ..cccveenvnne. (V)

or that we may in this relation at least treat V as a vector in
combination with other vectors, it being understood that V
operates on o but not on Us.

This result leads us back to an interpretation of VVe
analogous to the interpretation of VP in Art. 54. We have

SUWV Vo =lim 15962 D07 i (v1)

or the limit of the ratio which the 1ntegrated component of o

along the arc of a plane curve (— [Sdpe) bears to the area of that
curve, is equal to the component (—SU»VVe) of the vector VVo
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along the positive normal to the plane. This is a maximum and
equal to TVVe when the plane is at right angles to UVVq; it
vanishes when the plane is parallel to that direction.

If Sdps is the differential of P (some scalar function of p), the
integral {Sdps depends merely on the limits between which the
integral is taken (leaving aside cases in which singularities
occur), and is in fact P(p,)—P(p,) if the integration extends
from p, to p,. For any small closed circuit therefore the integral
vanishes, the initial and final points of the path of integration
being coincident, and therefore

VVe=0, if Sedp=dP. ..ceccerrrrrnrae. (VIL)

Conversely, if VVg=0, we must have Sqadp the differential of
a scalar P; for in this case the integral round any small
closed circuit vanishes, or what is equivalent, the integral from
o, t0 p, is equal and opposite to the integral back by another
path from p, to p,, or again, the integral from p, to p, is indepen-
dent of the path. These results will be extended to the general
case of curves which are not small. At present we remark that

VVVP=0, or VV2P=0, or VZP=scalar, ...... (viIL)
if P is a scalar function of p, is involved in equation (VIL).

ART. 57. It is useful to express the *operator V in various
forms. If, for example, as in Art. 50, we suppose the vector p
to be expressed in terms of three parameters w, v and w, and if
we write

dp=2P du=pdu, dp=2Ldo=pdv, d"p=PLdw= pdw, (1)

P u ‘ 15 ’ P v PHY, P dw P3 4 *
the symbols of differentiation d, d’ and d” refer respectively to
u, v and 1w, so that symbolically

a s 3 ’”_ i (
d—a—u.du, d _av.dv, d —aw.dw. veeveneneen(IL)
On this understanding, equation (VL.), Art. 54, becomes

° o) G
v VP2P3 =y +VP3P1 3o + VP1P2 ‘Sw

......... (1L

Sp1paps )

If the parameters are so selected that the derived vectors

P p2 and p, are always mutually perpendicular, the symbols V

and 'S in (IIL) become superfluous, and the expression for V
reduces to the simple form,

&, 6] &
V=gl =g, 1 e -1 v
AT P25 Ps™ Gyy crerereneeeee av.)
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If the vector p is expressed in terms of the Cartesian
coordinates @, y and 2z, so that p=ix+jy+ks, we have
p1=1, py=J, ps=Fk, and
G

B e (v.)

.0 .0
V——@é‘a‘:-l—j@-l-lu

This last form may be regarded as the canonical form of the
operator. We have, for example, when q is the operand,

_.%q .09, ;%9 _+.98¢ <. oVg_ r
V.q—@ax+jay+kaz-2'a S + 2 o _VSq+SVq+VV\g,
and we shall write

_%9 ;.99 ;.9 1,90, Vg, :
q.V —aw.@+ay.3+§z—.k—2z » += % 1=V8q+8Vq-VVVg;

so that in combination with its operand V aects as a vector in
combination with a quaternion.

Again if a is a constant quaternion, we have symbolically, an
operand being understood,

.9 . 0 2
V.co:ma—w—i—jaé?{+ka§é=v.Sa+SVa+VVVa,

.90 .0 6]
a.V=ma—m+aja—y+aka—z=V. Sa+SVa-VVVqy;

and in combination with a quaternion, not the operand, V still
plays the role of a vector.
In combination with itself

—v. (294,99 %0
V.V.q—V.(oax+Jay+kaz)
aj '2%1 2% | .
2T ay2+l° 52 T k

. %% ., %4
+ I‘”azam +ik dx oz
__Pq_Pq_Pq_ o
=T +V2.q,
and generally in all combinations V may be treated as a symbolic
veetor. Of course some little care is necessary when V is ex-
pressed in the general form, but it is precisely of the same kind
as the care required to distinguish between

2\ o 2 2\2
2 Y 3.9 o 2N
<x 8.70) vttty and @ (ax>

%
dyoz

=2

+1j

%
dzoy

.. % ..
5y T oyon
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Ex. 1. Show that if g= W+iX+;¥V+£Z,
. DX oY 97, .[OW 3Z Y
V4= "% "oy “(a*a—fa)
(OW 23X D W 3 2X
S (% + % ) (55 )
Ex. 2. Verify that
G,

V.Vo=Vi.c=- ,a—zz+,-a—y2+,az—2)o', where oc=iX+jY+kZ

EBx. 3. Prove that Vp=-3; UVAp=2A; VUp=—-2Tp!; Vp 1=Tp?;
V2. T(p~-A)1==0 if p is not equal to A; VZIVAp=~T(VA-lp)!;
V2log TVAp=0; V¥Tp= —f"Tp-2Tp-1f'Tp.
_SVByVAa_ VBAVAa—VeAVAR
Safy SaBA
Ex. 4. Prove that VAV.p=—-2\; VVVAV.P=-AVZP+VUSAV.P.
Ex. 5. Show that
(uV+Va)g=28aV.q, (u«V—-Va)g=2VaV.q.
aVd'pd"p+Vd'pd’p.a Sad’pd”, g
[Here (0V+Va).g=-2 pg({)p—('i-’pd";:dp .dg= —228Wm.dq]
Ex, 6. If P and @ are scalar functions of p, show that
V.PQ=VP.Q+VQ.P.

Bx. 7. If p and ¢ are quaternion functions of p, show that

V.pg=Vp.q+V.py.¢
where the suffix is intended to denote that the affected symbols are not to
be operated on by V.

[For example, VVAp=

Ex. 8. Interpret the expressions
VUV'.PQ, SUV'V'.PQR,
where the accents indicate that a marked symbol is to be operated on by the

correspondingly marked V.
[If P and @ are scalars, the first expression is V(VP)(VQ), or

g,-(a!_’ oQ_or QQ)

Oy 0z Oz oy’

This last expression is also true when P and @ are quaternions.]
Ex. 9. Find an expanded form for V2. PQ.

Ex. 10. Find the expression for V in terms of the usual », § and ¢
coordinates. [Use the relation (1v.).]

Ex. 11. Show that ¢. V= —K.VKgqg where V operates on ¢ in situ.
[It is sometimes convenient to place the operator to the right of the
operand.}

Ex. 12. If f.(p) is any homogeneous function of p of the order » which
vanishes under the operation of V2 the function Tp="-!. f,(p) will vanish
under the same operator.
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[Expressing that V2(Tp™. f,)=0, we may write this relation in the form
(V+V’§2. (Tp™. £,)=0, provided we remove the accents after the operation.
This expan(fs into V2Tp'™. £,+28V'Tp™V. f,+Tp™. Vif,=0, and observing
that SpV.f,= —nf. because f, iz homogeneous in p, we easily find the
equation reduces to m(2n+1+m)=0. This result is of importance in the
theory of spherical harmonics.]

Art. 58. Given a quaternion function p=F(q) of another
quaternion ¢, we have seen how to express dp in terms of dg
(Art. 51). It is a more difficult problem to express dg in terms
of dp, and we postpone the general method of solution for the
present.* However, there are a few cases in which the problem
can be solved directly, such as to find the differential of the
square root of a quaternion.

Here p=qd or PE=g, . ceiriiiiiiiiiainne (1)
so that pdp+dp.p=dq. .c.ccvvriniiiiininii (1)

Multiply this by Kp and into p, and two relations equivalent
to (IL.) are obtained,

Kp.p.dp+Kp.dp.p=Kp.dg; p.dp.p+dp.p?=dg.p. (111)
Adding, we have .
dp . (Tp2+2pSp+pH=Kp.dg+dg.p
because p+Kp=2Sp, Kp.p=Tp?%;
or 4.dp.pSp=Kp.dg+dq.p
because Tp?=(Spy—(Vp¥, p*=(Sp)*+2Sp. Vp+(Vp);
agh=Ke*-dg-g " +dg
48qt
As another example, under which this might have been in-

cluded, to find the differential of the n'* root of a quaternion
(n being an integer), we have
1

p=gn, q=p*, dg=dp.p*'+p.dp.p*-2+...+p"-'.dp. (V.)
Multiply dg into p and subtract the produet pdg, and
dg.p—pdg=dp.qg—qdp, or V.VdgVp=V.VdpVq. (V1)
Thus, with an indetermined scalar z,

V.VdgV V.VdgV:
Vdp-;—\q,qpﬂ, or dp=_—%ﬁ+<8dp+viq). (VIL)

and henece

Turning to (v.), we have on substitution from (vit.),
dg=n.p"'Sdp+ Vdp.p*'+p.Vdp.p*'+...+p" 'Vdp
_ et @ n-14 V-VdgVp
=n.p Sdp+Vq . np +—~——Vq
x(p* '+ Kp.p* 24+ (Kp) . p" 3 + ... +(Kp)* 1), ...(VIIL)
* See Art. 150, p. 273.
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because q and p are commutative in order of multiplication,
and because ap=Kp.a, or a(Sp+ Vp)=(Sp—Vp)a if SaVp=0,
the vector V. VdgVp.(Vq)~* being perpendicular to Vp. Again,

n__ Kp)n Vpn
n-14Knp. n—2+etc.=£_(_.__—__~
r p-p p—Kp ~ Vp
since p and Kp are commutative in multiplication, and the
expression (VIIL) reduces further to

@ V.VdgVp V
dg=n.p""Sdp+V—q.np”‘l+—~—til) Wz e (IX)

Thus we have by (vIL.) and (1X.) on elimination of x

_V.VdgVp/ pVgq dg.p
dp= Vg \l——nqvp)-i- g PRI 6. & |

and the sought differential dp is expressed in terms of p, g and dg.

ART. 59. Writing the first differential of f¢ in the form

d.fg=11(g, dg), covvvriiririniiiiiiiiiiciiin, (1)
to indicate that it is a function of ¢ and of dg, linear in the latter, the
second differential may be expressed by

. fg=folg, d9)+ (g, A%)y oeierrivrnieeriiinerann. (1)

where f;(g, dg) is homogeneous and quadratic in dg. '
A similar process holds in general, and in particular if dg is constant, so

that d%¢ =0, d®¢=0, ete., we have
™. fg=d. fu-1(¢, 4)=Fu (g, Ag)- «eeeeevririiririrernnnen (111.)

Suppose that f(g) and its successive differentials up to the m* are finite
for finite differentials of ¢, and consider the function

2 m—1
F@)=f(q+2p) -1~ T - /i@ P)= {5 Fo@ PV = o fns(@s )y oen(1V)
in which » is a scalar and ¢ and p are two quaternions. Differentiating

with respect to x, and leaving p and ¢ constant, we find by the general
relation 811.),

LD_ (g +-ap, p)-Fila, )~ fults P r%fm_l(q, )

a%i‘f’- =@ +ap, P) =1, P)=F - F(gs P)-r- — |%fm_l(q, ), .
% =fnr(g+2p, )~ fu1(gs P),

amTZ(mﬁ) =fm(q+ap, p).

J

Putting #=0 in (1v.) and (v.), we see that F(x) and its successive
deriveds up to the order m —1 vanish when #=0, and consequently

F(x)=iz;_:;(fm(Q) PYHFTm)y coererirmersensssveneananns (vL)
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where 7, is some quaternion function of z, ¢ and p, and where by (v.)
 F@m ~
11:I=lo xm-‘=hzr£0(ﬁn(q, P)trm)=Fn(gy P) civevirnanninn (vir)
By taking 2 small enough it is consequently possible to render
infinitely small in comparison with f,.(q, p), or
lim o
a=0 Lfn(g, )
Replacing xp by p in (1v.), what we have proved is that

0. v (viiL)-

RG+B)=F@+ 1A Y+ T3 A0 PV ot [ Uy P47l (1K)

where 7, is a function of ¢ and p, which becomes evanescent in comparison
with f,.(g, p) for sufficiently small tensors of p. This theorem is what
Hamilton calls “ Taylor’s Series adapted to quaternions.”
In certain cases, for a large value of m, the term

1
[ (@ P47
becomes negligible, and we may write the expansion in the usual symbolic-
form,

1

Fq+ D)= AD=FD+] - i@ DY+ [ fol@s p)Fete.s Ag=p, wovvvrrn ()

or more explicitly for a vector variable,
- 1 1
Sflp+m)=e"5Y_f(p)=F(p)— Sav Jp+ 3 (SwVR. f(p)+ete. ... x1.)

Arr 60. Instead of differentiating a second time with the same char-
acteristic d, let the differential of
dfig)=1i(g, dg)

be taken for a new characteristic, d’ corresponding to the differentials d'q
and d'dg of ¢ and dg. The result may be written

] d'd. f(9)=1, (g, ¥Ag)+1o(g, A'q, dg)y wevevrrriienininnnnnn. 1)
where in full, ] . 1
£(gy g, dg)=lim { f,(g +lag 4) A dq)}. ........... (i)
Reversing the order of differentiation,
dd’. /(g)=ri(g, dd'g)+12(q, dg, A'g). weeverinniinnnnnnn. (1)
We shall now prove the relation
Jo(q, 7y 8)Y=F3(gy 8, 7)) wrveeririiniiiii e @iv.)

where » and s are any two quaternions replacing dg and d’g in the functions
which occur in (1) and (). We have by (11.),

filgs  =tim o{ fi(g+ 20, 5) ~Ailar 9|
~tin [tim { f(gir+30)#(a+77)}
—tim n{ F(g+50)- 7@} ]

=lim  mn {f(q+%r+%s)-f(q+,%r) —f(q+;8>+fq}’

n=w, m=w©

and from symmetry this is equal to f;(g, 5, 7).
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More generally, if by successive differentiation of a function £(q), @ function
£,.(q, Iy Ty ... T,) @8 constructed, the order in which the quaternions ry, ry, ...1,
are grouped among themselves is tmmaterial.

In virtue of (1v.), it appears that

d'd.f(g)—-dd'. f(9)=fi(g, ddg—dd’q); ........... cesearnes (v.)
and in general this difference vanishes if, and only if, d'dg=dd’g.

Bx. 1. If @ is a scalar function of p, and if d@==Svdp, dv=¢dp, show
that the function ¢ is self-conjugate, or that SapB=83¢a, where a and 3
are any two vectors.

[This is a particular case of (1v.). Compare Art. 51, Ex. 2, and Art. 62.]

Ex. 2. If v, and v, are any two vector functions of the vector p; if
dv,=¢,(dp) a.n(i dv2=$2(dp), and if V operates on all functions of p on its
right, show that

Sy, V.8V, —8SnV.SnV.=8(¢vy— ) V. ;
or in other words prove that the two operators produce the same effect on
any function of p.

Ex, 3. If p, ¢ and  are any three quantities or operators, not necessarily
commutative 1n order of operation or multiplication, show that

([, ¢))+Llg, 7)p}+((n Plg)=0
where (7 gl=pg—gp: [lp, 4} 71=p, glr~rlp: g}
Ex. 4. If p and ¢ are any two quantities or operators, show that

e‘qpeq=p+7-il+%+l .};3' 3 et where  p,=[ps, ¢];

and hence prove the equation connecting operators,
Sy, ge Y =S,y

where v; and v, are any given functions of p, where v; is a determinate
function of p and where V operates only on functions on its right.

ArT. 61. To find a stationary value of the scalar function
Jf(p), whenever a stationary value exists, we equate to zero the

first differential
df(p)=S8udp ....... errrerre e (L)

of f(p) for all differentials dp. This requires the vector v to be
zero, for otherwise Sydp cannot be zero for every differential dp,
and the stationary values are obtained by substituting in f(p)
the vectors p which satisfy the equation

=0 it cerenns(IL)
If the stationary value is subject to the condition
g(p)=0, ceoviiiinnn, crenreraranes «.(I1L)

where g(p) is a given scalar function of p, the differential dp
is no longer arbitrary, and the conditions are

df(p)=Svdp=0, dg(p)=SAdp=0, .............. (1v.)
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where X is a new vector function of p defined by the nature of
the function g(p). Considered geometrically the condition (11.)
requires the vector p to terminate on a certain surface and con-
strains the differential dg to be tangential to the surface as
expressed by S\dp=0. The function f(p) has-a stationary value
if df(p) vanishes for every differential dp at right angles to A.
In other words we must have y parallel to \, or

v+aA=0, or ViIA=0, ..ccooeerrrrnnnneen.n. (v.)

where z is a scalar multiplier. The solutions of (1iL.) and (V.)
afford vectors p which render f(p) stationary in value.
Again if there are two equations of condition,

9(P)=0, h(p)=0, .ceovreerrrrararnnnn... (ve)
the differential of dp consistent with these conditions must satisfy
dg(p)=S>\dp=0, dh(p):S,u,dp=0, ............ (viL)

so that dp || VAu, and if in addition f(p) is stationary in value so
that df(p)=0, or Sudp=0, we must have y coplanar with A
and u, or

v+aA+yu=0, or SAu=0, cceccnn........ (vis)

where » and y are two scalar multipliers. Here the three
vanishing scalar functions of p, g(p)=0, k(p)=0 and Siau=0,
serve to determine a certain number of vectors p as vectors to
the points of intersection of three known surfaces, and substitu-
tion of any one of these vectors in f(p) will give a stationary
value.

For the solution of the equations, no general rule can be laid
down. Sometimes, indeed most frequently, it is more convenient
to deal with the equations (v.) and (VIIL) involving x and y
rather than with the results of elimination of these scalars.

To examine the nature of the stationary values of f(p), it is
necessary to proceed to second differentials. For example when
there are two equations of condition, we have in addition to (VIL)
(compare Art. 51, Ex. 2, Art. 60, Ex. 1),

g (p) =Srd’p+8dppdp=0, d*%(p)=Sud’p+Sdpg,dp=0, (1x.)

where ¢, and ¢, are two linear vector functions determined by
the functions g(p) and % (p), and we must consider the sign of

d*(p)=Sud?p+ Sdppdp, «.ovvevrriiiininnns (x)

when appropriate values of p and dp are substituted therein.
By adding the equations (1X.) multiplied by « and ¥ to this we
‘have by (viIL)

; Qd%f(p):Sdp(¢+x¢/+@/¢%)dp, where dp ” V)\,U., ....... (XI.)
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the scalars z and y being given by (VIIL) in terms of », X and u
by means of the relations Vur=2Viu, Vid=yViu, in which
we suppose the appropriate value of p to be substituted. For the
negative sign, f(p) is a maximum, while it is & minimum if the
sign is positive.

Tn like manner, when there is only one equation of condition,
we find

d%(p)=Sdp(¢+x¢;)dp, where SAdp=0, v+ar=0, (X11.)

and if d?f(p) is positive for every dp perpendicular to A the
function f(p) is a minimum; if d?f(p) changes sign for some
vectors dp perpendicular to X, the function is merely stationary ;
if d?f(p) is constantly negative for the differentials dp, the
function is a maximum.

Ex, 1. Find the stationary values of Tp, subject to the condition,
(p—u)+a?=0.
[Here dTp=—SUpdp=0, where dp satisfies S(p—a)dp=0, so that
Upllp—a, or pl|a, or p=xa say, and the condition gives
(z—1)2%+a?=0, or z=1=xdTu,
80 that p=a+ala.] ‘
Ex. 2. Find the stationary values of Tp when (p—a)y+a?=0, SBp=0.

EXAMPLES TO CHAPTER VIL

Ex.1l. If op=p=0!f3, Ta=1, Saf3=0, the locus of the point p will be
the circumference of a circle, with o for centre, and oB (=f) for radius, and
in a plane perpendicular to oA (=o).

Bx. 2. If op=p=V.a!B, y=0c=VafB, Ta=1, the locus of P is an
ellipse, with its centre at o, and with op and oc for its major and minor
semiaxes.

Ex. 3. If under the same conditions as in Ex. 2,

o8’ =f'=a"1Vaf3, or'=p'=aVap,
the locus of P’ is a circle with op’ and oc for two rectangular radii. The
equation of the circle may be written

Pl = atBI'
Ex. 4. If or=p=0aif, Saf=0, the locus of P is a logarithmic spiral with
o for its pole.

Ex. 5. If op=p=V.a!P3, the locus of P is an elliptic logarithmic spiral—
a plane curve which may be projected into an ordinary logarithmic spiral.
Ex. 6. The equation
p=cta+a' with Saf=0, Ta=1,
represents a helix, while the locus of the perpendiculars to the axis of the
helix which intersect the curve is represented by

p=cta+uatf3,
where % is a variable scalar.*

# These Examples are taken from the Elements of Quaternions, Art. 314.
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Ex. 7. If we project the ellipse
p=acosz+fsinz

on a plane at right angles to the vector A, the vectors a and B will project.
into the principal semiaxes of the projection provided ‘

S.VAaVAB=0.
() They will project into equi-conjugate radii if
TVAa=TVAS.
(OB SaUL= +/[$(B* - o) £/ {1(B* - 0®)+(SaB)’}),
SRUA=FJ[3(a?~ B9 = J{}(B*— a®F +(SaB)}],
the ellipse will project into a circle—one of four, of which two are imaginary.
(¢) The squared radii of the circles of projection are
—H(a?+ B F (B - a®fF +(SaB),
the upper sign corresponding to the real circles.
Ex. 8 A circle of radius +2"1T# rolls on a circle of radius T3 and

centre o, and carries with it a point P at a distance !T#3 from its centre.
The locus of the point P is represented by

or=p=(1+nt)aB—lattn:B3 Ta=1, Saf=0.
(a) Prove that dp=3r(1+n)a(p—a’B)ds,
and assign the geometrical interpretation.
(b) 1f the variable scalar ¢ represents the time, the equation of the hodo-

graph * is
p=4r(1+n)a(nta’B - lal+B),
and show that this curve may be generated by a point carried by one circle
rolling on another.
(¢) Show that the condition for a cusp on the path of the point p is
1=nla™,
and discuss fully the nature of this equation.

(d) Prove that the vector of acceleration of the point P for uniform
motion of the circle is

p=}ri(1+n){@+n)o!B~(1+n)p},
and determine the condition that the acceleration may momentarily vanish.

(¢) The condition for an inflexion is found by expressing that Udp is
stationary or that Vdpd2?p=0, and it may be reduced to

(1 +20)—n(2+7)Sa™+1=0.
(/) Show that the inflexions lie on the circle
(@) (1+n) - zznﬁ(3+2n)}’lr
T”‘{ n(2+7) 8.

Ex. 9. Under the same conditions, what curve, or rather what system of
curves for various values of the scalar { is represented by p= Bt +la‘3?

* The hodograph of an orbit is the locus of the extremity of a vector drawn
from a fixed point to represent the velocity of the moving body.
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Ex. 10. (a) If og=¢(¢) and oQ'=yr(u) are the equations of any two
curves the relation
Td. ¢(t)=Td. ¥ (u)

is equivalent to a differential equation connecting the parameters so that
corresponding values of the parameters in an integral determine equal arcs
measured from fixed points on the curves.

(b) If thelcondition (a) is satisfied, the quaternion
d. ()

d. ¥ ()
is a versor which renders the tangent to the second curve at u parallel to
the tangent to the first curve at the corresponding point ¢.
(¢) When the curves lie in a common plane, the condition (a) being still .
satisfied, the equation
d.4()

or=p=¢()~ 3" wu)\#(u)=oq—m

is"the locus of the pole of the second curve when it rolls along the first so
that points answering to corresponding values of the parameters ¢ and »
remain in contact.

(d) The vector tangential to the roulette at the point p is

- d¢>)
dp=— (d ) ¥
and this vector is at right angles to p— ¢(¢) because the quaternion of (b) is
& versor.

(¢) The equation of the normal at the point P is therefore

d
B =op+apa=b(d)+(z—1). th A (w).

Bx. 11. The earth and a planet being assumed to describe circular orbits

round the sun, show that the apparent path of the planet is represented by
p=TU(ey** a—bB*r " a)

where ¢ is the radius of the orbit of the planet and b that of the orbit of
the earth, where P and E are the periodic times of the planet and the earth,
where y and (3 are unit vectors normal to the planes of the orbits and where
a is a unit vector directed towards a node.

(a) Show that the equation
SB(C‘y‘“”—l - bBuE‘l)(cp—l.),Hurl _bE- Bl+4t.E'1) =0
determines the values of ¢ corresponding to the “stationary points” at
which the motion changes from direct to retrograde or vice versa.
Ex. 12. Show that the equation
p=hVax+ua‘f3 where Ta=1, Sof=0
represents a cylindroid referred to its centre, and deduce the scalar equation
BV ap?Sap=2~SBpSafp.
Ex. 13. Describe the loci represented by the following equations :
(i) p=aSAUT;
(ii) p=0SAUr+BSuUr;
(iii) p=aSAU7+ BSuUr+y8SyUT,



ART. 61.] EXAMPLES. 85

where a, 3, ¥, A, p and v are given constant vectors, and when the auxiliary
variable vector 7 is perfectly arbitrary.

(¢) What modifications must be made in your interpretations when r
remains constantly inclined to given direction ?

Ex. 14. (a) If Spdp=0, show that Tp is constant.

(b) If Vpdp=0, it follows that Up has a fixed direction.

(c) If Spdpd?p =0, show that UVpdp has a fixed direction and the vectors
p are paraﬁel to a fixed plane.

Ex. 15. Show that

T(+¢)=(1+9*1+Kg), UL+9)=(1+91+Kg)™

(Elements of Quaternions, Art. 343 (9).)

Ex. 16. Prove the relations

Ua+B) =T (LraB)1 + oty L EFD T8 ararigy Faparn

and find the development to the third order when T/ is small in comparison
with Ta.

Ex. 17. Supposing the earth to describe a circular orbit round the

sun, show that the parallactic ellipse of a fixed star is represented by
T=-V.y%s1.Us

where o and y%. are the heliocentric vectors to the star and to the earth
respectively.

(@) Show also that

UVoy.Tac™! and U.oVoy.TaSyo?

are the principal vector radii of the parallactic ellipse.

Ex. 18. If v is the (scalar) velocity of light and p the velocity of the
earth In its orbit, the aberration of a star is represented by

U@Ues+p) - Us.
(a) The earth’s orbit being supposed circular, the aberrational ellipse is

given by
T=—-vuVU.y**ac. Ur

where u is the scalar velocity of the earth.

Ex. 19. Assuming the effect of refraction to be K times the tangent of
the zenith distance, show that a star in the direction of the unit vector o
appears to be in the direction of the vector

Vio
1 K*—v)
( 4 Sk )7

where £ is the unit vector directed to the zenith.

Ex 20. If » is a point in a body attached at B and ¢ by universal joints
to two bars BA and ¢p having fixed universal joints at A and b, show that
the motion of the point P 1s subject to the conditions implied in the
equations

AP=p=pap~l+qeq~t, rp=p'=ryr-l+qngl,
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where a, y, € and 7 are fixed vectors and where p, ¢ and 7 are variable
quaternions ; prove that the envelope of the point may be determined by
identifying the equations

SVdgg—1.Vgeglp=0, 8Vdgq.Vgngp'=0;
and show that these conditions require the five points ABpcD to be coplanar.

Ex. 21. If Sodp becomes the differential of a scalar function of p when
multiplied by a suitable factor, show that SoVa=0.

BEx. 92. If dv is the directed element of a surface at the extremity of
the vector p, the element of solid angle it subtends at the origin is
SdvV.Tp L :

Ex. 23. Show that
— Vdg v ) v Vdg V.
d.e‘l—(qu+S Vq Vg e+ V. T el

BEx. 24. The differential of a function of the vectors p and o, o being a
function of p, may be written in the form *

d.P=—-8dp(V,-VySc'Vs). P

where V, and V, (gjerate respectively on p and on o as explicitly involved
in P, and where V,’ operates on p as involved in o, the accents being
removed after the performance of the indicated operations.

(@) If P is a scalar function of p and o, and if ¢ is a function of p which
renders P constant,
VoP -V, 8¢'VeP =0,

(b) If the same function ¢ renders constant another scalar function Q of
p and o, the relation

(P, Q}=8.VV,PV,QVV, where (P, Q)=8(V,PV,Q-V,QV,F)
must be satisfied. And if o can be derived from a scalar function of p by
the operation of V, we must have

(P, Q)=0.
(¢) If A;, py, Ay and p, are any vector functions of p and o, the operator
S+ Ve)S(AVa+ pVa) = S(AVp + 15Ve) S,V + 1 Vo)
reduces to the form S(A Vo + 112V e)-
(d) If Py denotes the operator S(V,PVs—VsPV,), we have
PyQ=-QvP=(P, Q)

where P and Q are scalar functions; and if R is any third scalar function,
the expression

PVQV -R- QVPV -R= PV (Q’ R) + QV(R@ P) = (Pa (Q’ R)) + (Q’ (R’ P))
does not involve the second deriveds of R.
(¢) Hence (P, (Q R)+(Q, (R, P))+(R, (P, Q))=0;
and the operator (P, Qv=PyQuv—QuvPy.

* Compare Jacobi’s method of solution of partial differential equations and
Lie’s work on Pfaff’s Equation.



ART. 6L.] EXAMPLES. 87

Ex. 25. Bright curves are seen on a surface owing to light reflected by
scratches on the surface from a source at A to an eye at B. If the scratches
are represented by putting w=const. in the equation of the surface
p=a(t, u), show that the equation of the curves may be found by combining
the equation of the surface with the result of expressing that

T(¢-a0)+T(¢-B)

is a minimum with respect to ¢.

(@) If the equation of the surface is fpo=0 and if Fp=u is the equation of
a family of surfaces through the scratches, the bright curves are given by

fp=0, SYfYF{U(p—a)+U(p-B)}=0.

(&) The bright lines due to the grooves made in turning a surface of

revolution (Tp=fSkp) lie on the surface
Skp{U(p— )+ U(p— )} =0;

and meridian grooves on the same surface give rise to bright curves on the

surface
SVEp(Up + bf'Skp){U(p~ 0) + U(p= B)} =0.

Ex. 26. The differential of T(p— a) corresponding to a given differential
of p ceases to be determinate when p comes to coincidence with o unless we
know a law according to which p tends to coincide with o.



CHAPTER VIIL
LINEAR AND VECTOR FUNCTIONS.

ART. 62. A vector function of a vector, distributive with
respect to that vector, is called a linear wvector function.

Thus if

p(a+B)=¢a+¢B, Spa=0, SpB=0, ............ (1)
for all vectors « and (3, the function ¢ is linear and vector. As
a corollary to the equations of definition

P(LA)=EPA . vevinioeiiiieeinae, (1L.)
if z is any scalar.
Given the vectors

d=¢a, B'=¢B, ¥ =Y, ceerrererrren.. (1)

the results of operating by ¢ on any three given and non-
coplanar vectors, the function ¢ is determinate ; for by (1.)
_«SByp+BSyap+ySabp .
¢p Sa 18 _y ) . ( )
since pSafy=2aSByp for any arbitrary vector p.
With a new signification of the vectors, o', 8, ¥, a, B, v, any
linear function may be reduced to the trinomial form, ®

pp=0a"Sap+BSBp+YSyp, coeverriieraenn (V)

in which either set of vectors o', 8, ¢ or a, B, y may be
arbitrarily assumed. For if we resolve ¢p along three fixed
vectors o, B, ¥/, the coeficients in the resolution must be scalar
and distributive functions of p; that is, they must be of the form
Sap, SBp, Syp. If, on the other hand, we assume a, 8 and v, the
set o, 8" and y follow, being ¢VBy:SaBy, ete.

Thus in any case, the general linear function is seen to involve
nine constants, the nine constituents of three vectors ¢, 8 and v,
or ¢, B and .

For arbitrary veectors, a and 3, if

SagpB=SB¢d, «ccovvvrrirriiiiianrinnnn.. (vi)
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the function ¢ is said to be the conjugate of the function ¢.
The conjugate for the trinomial form (v.) is

¢’ p=aSd'p+BSBp+ySyYp. -ieiiiiinnn (vii)
Ex. 1. Given a=¢p=0o'Sap+SBp+ySyp,
show that
p=¢lo=(VBRySBY's + VyaSyds+VefSaBo): (Sa’By'Safy).

Ex. 2. Show that VapfB is a linear vector function of p, and find its
conjugate.

Ex. 3. Is aTp a linear vector function of p?

ART. 63. From a geometrical point of view the equation

oL (1)

in which ¢ is a given linear and vector function, and in which
the vector p is arbitrary, establishes a linear transformation from
vectors p to vectors o

Equal vectors are converted by ¢ into equal vectors; right
lines transform into right lines, and planes into planes, as
expressed by the relations

c=¢atitpB if p=a+it8;
a=¢a+t¢B+u¢y if p=a+tﬁ+uy ...(II.)

—consequences of the formula of definition (Art. 62 (1.)).
The plane whose equation is

S(p—a)By=0 becomes S(oc—¢pa)pBpy=0; ...... (1)
and the vector area
VaB transforms into VgagB; ...cooonennn. (1v.)

while the volume

SaBy becomes SpapBpy. ..ovviiriiiinnn. (v.)

Bx. 1. Verify that
SpadBdy _Spa'sBdy
SafSy So/fBy’

where «a, 3, ¥ and «, 8, ¥’ are any two sets of non-coplanar vectors.

Bx. 2. Prove that

V¢a¢B+V¢y¢3=V¢€¢of, if VaB+V‘y8=Ve{.

[Take o' along the edge of the planes of af and of 8, and reduce Vaf3

and Vy8 to Va/3" and Va'y/, ete.]

Ex. 3. Prove that Vag is a linear vector function of VafS.
[This is practically included in the last example. Verify by the trinomial
form.]

m),
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ART. 64. There is an inverse transformation which converts
vectors ¢ into vectors p, so that

p=¢ ¢ if a=¢p; .......... e (1)
and we propose to investigate this transformation.
Writing DPp=0=VAt ceveriirririiiiiiiannias (L)

the conditions of perpendicularity of the vectors ¢, A and o, u give
S>\¢p=0, S;A¢p= 0, or Spp'A=0, Spgb',u.=0 ...... (1)

by the property of the conjugate function (Art. 62 (VL))
‘Thus the vectors ¢'A and ¢'u are at right angles to p, and con-
sequently

mp=VpApu=YViy, or mp=va, ......o..... (1v.)

» being an auxiliary linear and vector function defined by the
equation

YVaB=Ve'ag'B, ccovvvveiriiiniiniinnnn. (v.)

in which ¢ and B are any arbitrary vectors. (See the last
Article and its Examples.)

To determine the value of the scalar m operate on (Iv.) by
S¢'v, where v is an arbitrary vector, and we have

MSNuy =S¢ AP' upv, vvivvnnnnne. PR (Vi)
because Sp¢'v="Svpp=Sva=Su.
Operating likewise on (1v.) by ¢, we have

mp= o or Mmo=gro;
and replacing o by ¢p we also find

mp=Yrpp;
so that we may write symbolically
M=PYr =Y, ccerrrreririrniiuiinn (vir)

with the interpretation that the effect of operating first by
and then by ¢ on any vector, or first by ¢ and then by y, 1s to
multiply that vector by the scalar m. This relation shows that
m is an invariant, or absolutely independent of any particular
set of vectors A, u, v in (V1.), for by (v.) Y- is independent of the
vectors A and u in (IV.). (See also Ex. 1, Art. 63.)

Thus wherever m is not zero, we can always pass from vectors
o to vectors p by the relation

MP=Y0, ceerrerarinerirainarianiins (viIL)
m being calculated by (vi) and Y by (v.); and it will be
observed that in the calculation of this scalar and this auxiliary
function, we only require the direct operation of the function ¢’
on vectors.
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Ex 1. Show that the function Vr transforms vector areas into vector
areas when vectors are transformed by the function ¢

Ex. 2. Show that volumes are altered in the ratiom : 1 in transformation
by the function ¢

Ex. 3. Show that v is the conjugate of ¥ if ¥'VaB=Vdadp.

[Expand SVy8V a3, and prove that it is equal to SVafVe'ydd.]

Ex. 4. Show that volumes are altered in the ratio m:1 by the trans-
formation produced by ¢.

[mSaf=SudyB=S¢ayB=S. ¥'$af]

Ex. 5. Follow in detail the geometrical meaning of the transformation

employed in deducing o #
mp=vya from a=dp.

[See Art. 63 (1v.) and Art. 150.]

ART. 65. The transformation in the last article fails in one
case—if m is zero. In that case the vectors o are all coplanar,
the volume of any parallelepiped formed by them being zero
(Ex. 4, Art. 64); and because in general mp=1y0 if o=¢p, in
tlllis particular case, the function v, destroys every vector in the

ane.

To cover this case, consider the general transformation for an
arbitrary function ¢,

a'=(¢+0)p = ¢ep and MpPp=1e0, «ererrrernanan (1)

where ¢ is a scalar and where m, and ., bear the same relation
to ¢+c¢ that m and - bear to ¢. It appears at once by (v.) and
(VL), Art. 64, that

MSAuy=S(¢' + )N (¢"+ ) (¢’ + ),

Y VAR =V(¢' + NP + O} oveeerrnirriiinnnnnn (1L)
so that if we write
Me=m+me+m’E+e3, Ye=Y+ex+ct e (11L)

we shall have
M A v =\ upv+S¢Augv+ S¢'?\¢',u.v,]
m SAuy =S¢ Auv+ SA¢'ur+ SAue’y, | O (v.)
xVAn=VeAu+Vagu. J
Now for any arbitrary value of the scalar ¢, the scalar m, is an
invariant, and therefore, separately, the coefficients in its expan-
sion m, m’ and m” are invariants, or are independent of A, u

and v
By (1.) we have identically for all scalars ¢,

M= Po\re="Wees ++vevrrrsernrmnniiaraacnns (v)
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or m+m'c+m et +cE=(p+c) (Y +ex+e?)
=¢¥t+c(Y+ox)+cX(p+x)+¢
=(¥+ex+)(¢+0)
=Vp+e(V+xe)+eix+¢)+¢

and therefore equating the coefficients of ¢ on each side

m=¢Yr=vp; W=Y+¢x="y+xp; m'=¢+x; .-.(VL)

it being understood that these equations denote that equal results

are obtained by operating with right or left hand numbers on an

arbitrary vector.

One of the transformations most frequently required in
quaternions is to invert a function ¢+¢, or to replace an
equation ¢=(¢p+c¢)p by mp=10; and in general the process,
due to Hamilton, as given in the text is the shortest and most
certain. We first calculate V(¢'+c)A(¢'+¢)u and express it in
terms of VAu. Then we either calculate m, from (IL), or it is
sometimes better to calculate it directly from (v.), namely from

M VAu = pelre VAu.
In particular ‘

mp=vya, mp=vyYp+xs, m'p=xp+ao if o=¢p; ...(VIL)
and thus the general solution of c=¢p is m'p=xo+p if m is
zero with the implied condition Y¢=0; while if m=m'=0, the
general solution is m”p=0+xp with the implied conditions
VYo=0, Yp+xo=0. In the first case (m =0, m’==0), the vector
p may be considered arbitrary in y,p—there is in fact nothing to
determine it. But as - destroys every vector in the plane of the
vectors o, it is really only the component of the vector normal to
that plane that is of any account in p. In the second case
(m=m"=0), similar remarks apply ; the vector p is arbitrary on
the right subject to the condition Yp+xo=0. The function
may vanish identically, and this case we shall consider in Art. 66.

Ex. 1. Determine the functions m, Y and X for the function ¢p=3a'Sap.
[Vp=ZVafSBop; xp=2VaVdp; mp=¢yrp=328afySy' e . p.]

Ex. 2. Find the auxiliary functions for ¢p=VApp.

[Find ¢, and V. for ASup+pSpA=dp.]

Ex. 3. Solve the equations ¢=VaVSp and o=Vap by the general
method, and directly.

Ex. 4. Express ¥, and X in terms of . and X..-

Ex. 5. Construct a linear vector function which renders four given
vectors parallel to four others.

[The data are $al|«, 48| 3, byliy’s $51|8, and the function is

_ aISBIyIS/ B/S_ylafsl ‘Y’SalBIS/
do=c. SBys PP+ Tgias Sveettgups Safip),

where ¢ is arbitrary.]
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Ex. 6. Prove that
mVaB=V¢'ap'B+dVdaf+¢dVad'S;
mVaB=V¢el+Vad'S+$Vaf.
[See equation (vi.). These relations are often useful.]
Ex. 7. Prove that
mp'VaB=Vay; ¥Vay'B=mVe'aB; $VdaB=Vay'S.
Ex. 8. Prove that the equation
p=(p+)la, or V(dp—a)p=0,
« being a fixed vector and ¢ a variable scalar, represents a twisted cubic.
[Show that it cuts an arbitrary plane in three points.]

Art. 66. From the equations of the last article connecting
¢, x and y» we deduce

x=m"—¢; Y=m'—m"¢+¢?; O=m—m'¢p+mp:—¢3; ...(L)
and we have the corresponding equations for the conjugate ¢’,
X=m'—¢"; Y'=m'—m’p'+¢?; 0=m—m'¢ +m"¢”?—¢% (1)
These may be proved by reflecting that
Sa¢p?B=S¢ apB=SB¢, etc.;
so that for example
SaxB=Sa(m”—¢)B=8B(m" - ¢)a=SBx«,
and from the third and fourth of these we have (m”"—¢)a=xa
because 3 is perfectly arbitrary.
Let g,, g, and g, be the roots of the scalar cubic,
O=m—m'g+m’P?—g®=0; ...ccoieninien, (11L)

so that m=g.9,05, ™M =9595+9591+ 919 M =g+ +7s --.(1V.)
This scalar cubic is called the lafent cubic of the function, and
its roots are the latent roots of the function ¢.
We may now write the symbolic cubic (1.) satisfied by the
function ¢ in the form

(p—9)(p—92)(P—93)=0, sevvriirnirinarnnnn. (v.)

and the same symbolic cubic is satisfied by ¢'. Hence

S(¢'~g)a . (p—9:)(¢—95)B=Sa(p—g: (¢ —g)(p—95)3=0(VL)
whatever vectors a and 8 may be; or in other words the vector
(¢'—91) a is perpendicular to the vector (¢ —g,)(¢p—g;)B8 The
vectors ¢ and 3 being both arbitrary, it follows that one or other
of the vectors (¢'—g,)a or (¢ —g,)(¢—gs)B must be parallel to a
fixed direction.

But (¢’'—g,)a is not generally parallel to a fixed direction
when the vector a is arbitrary, for if it were we should have

V(¢'~9))a(¢' =9)B=0 or (Y~g,x+9,>)VaB=0,
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where ¢ and B are quite arbitrary; or symbolically,

V—gix+9.°=0, or (p—go)(¢—gp)=0, ..cvovv. (viL)
utilizing (1) and (1v.), and replacing m”—g, and m’'— gm’+g.°
by their values, g,+g; and g,9, In this case, which is quite
special, the symbolic cubic of the function degrades into a quad-
ratic (VIL).

We conclude therefore that the product of a pair of factors of
(v.) operating on an arbitrary vector reduces it to a fixed direction,
and writing

(p—9.)(p—93)p s (p—9)(p—g0p | v2>
(p—9)(P—g)p || Y -eeverveniiiinnnnn. (viL)

the directions of the vectors vy,, v,, v; are fixed and are called the
axes of the function ¢.
We have by (v.),

PYi=1Yr PYe=GaYe PYs=JsYsi coorerenens (1x.)

and these vectors are gemerally distinct if the latent roots
g1 0o, g are unequal, and they are also generally non-coplanar.
Resolving then any vector p along y;, y, and vy; we have

P=y Y YsF Y5 cereenieieni (x.)

(p=90p=Y(g: =9 y2+2(85=91)¥s:
(p—92)p=2(91—9) V1 +2(d5—95) vs;
(p—92)p=2(91—95)v1+ ¥ (92— 9s) 25
(¢ 7'92)(91’ —93)p=2(91—9:)(91— 9 715
(p—95)(p—91)p=Y(2=9s)(92— 1) ¥z
(p—9)(Pp—92)p=2(95—9)(9s—92) Vs
Thus (¢ —9,)p is coplanar with the pair of axes vy, and y,, and
if 4, is the axis of the conjugate function corresponding to the
root g, it follows from the equation

Sp(¢'—gl)‘y1’=0=Sy1'(¢—gl)p ................ (XL)

that the vector y,” is perpendicular to the plane of (¢—g,)p, and
in particular to the vectors y, and v, If vectors are drawn from
the centre of a sphere along the axes of a function and of its
conjugate, the two spherical triangles the two sets of axes deter-
mine are supplemental.

Conceive the function ¢ to undergo continuous variation so
that two latent roots, g, and g, approach coincidence. The
corresponding axes approach and ultimately coincide, but their
plane is still determinate being perpendicular to v, Similarly
all three axes may coincide in a line perpendicular to that in
which the three axes of the conjugate simultaneously coincide.



ART. 66.) ‘ ROOTS AND AXES. 95

We shall give an illustration of a function having three equal
roots. Let ¢a=p, ¢B8=vy, ¢y=0, then ¢$?*8=0, ¢*°¢=0 and
generally ¢30=0, but ¢*p and ¢p are not zero. The function is

¢p=(BSByp+ySyap) :SaBy, and ¢’p=ySByp:Sefy=1p.

A totally different class of functions is characterized by the
equivalent conditions that the axes are indeterminate or that the
function satisfies a symbolic quadratic and not a cubic (compare
(vir)). If v, and v, are two different axes corresponding to the
same root g,, the function ¢ — g, destroys every vector in the plane
of y, and v,, and the function is of the form

¢p=9:p+(91—92)¥1Sv2v3p : Sy1¥:Ys

and ‘ (Pp—=9)(Pp—9)=0. cerirriiiiiiiniinans (XI1L)
The latent cubic has two roots equal to g, and the third equal
to g, C

Finally a third class may be noticed—that for which three
non-coplanar axes answer to the same root—but a function of
this kind is simply a scalar constant.

In general the latent roots may all be real, or two may be
imaginary. Corresponding to imaginary roots g,=g+/~=1¢
and g;=g— N —1¢/, the axes must be of the form y,=y+ N -1y
and yy=y—a/=1y. For (p~g,)[(p—g,)+(¢~gy)] is real and

must produce a real vector from a real vector; but

(p—9)(p~9:)—(¢—95)]

is imaginary and produces an imaginary vector from a real
vector.

Ex. 1. Every function coaxial with a given function ¢ is of the form

o +yX+2
(Xf %, %y and k; are assumed to be the three roots of the function—the
only disposable constants—we find on operating by 2y +yX +2 on y,, y, and
vy three equations which determine z, y and zﬁ

Ex. 2. Coaxial linear functions are commutative in order of operation,
and conversely functions that are commutative are coaxial.

[The first part is easily proved on expressin% an arbitrary vector in terms
of the axes. The second part is established by operating on the axes. Of
course one function may have indeterminate axes. If so, two axes of the
other must lie in their plane.}

Ex. 3. Find the latent and symbolic cubics for ¥ and x.

Ex. 4. The equation

Spdpyp=0, or Spppdp=0,
represents the three planes through pairs of axes of ¢,
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Ex. 5. In general, if (P +z.d+y)p=0,
where « and y are scalars, and p any given vector, either p must be an axis,
and the corresponding root must satisfy the quadratic

g +ag+y=0,

or else p must be coplanar with a pair of axes, and the corresponding roots
must both satisfy the quadratic.

Ex. 6. Deduce the symbolic cubic from the result of replacing A, p and
v by ¢p, $?p and ¢%p in the relation

PSApv=ASuvp+ puSvAp + vSApup.

ART. 67. Combining a function and its conjugate by way of
addition and subtraction we obtain two more functions,

Pp=14(p+¢)p and Vep=3(p—¢)p. «oeeererer.. (1)
To justify the form attributed to the second funetion, observe
that Sp(p=VP=0 ceveerrerreeeereireennnn, (1)

whatever vector p may be.

The function @ is said to be self-conjugate. The conjugate of
Vep is —Vep, and the vector e has been called the spin-vector
of ¢.

%he axes of a self-conjugate fumction are mutually rect-
angular. The function being its own conjugate, each axis must
be perpendicular to the other two. The awxes of a real self-
congugate function must be real. If two are imaginary they

must be of the form y+a/—1y and y—a/—1y by the last
article, and the condition of perpendicularity requires

Sty+~ =1y)(y =~ =1y) =y +y?=0,
which cannot be, as % and 42 are both negative. Hence follows
the important proposition that the latent roots of a real self-
congugate function are real.

If two roots of a real self-conjugate function are equal, it
must have indeterminate axes. For if a single axis corresponds
to the double root, it must be perpendicular to itself, and there-
fore imaginary.

Referred to the axes a self-conjugate function is of the form

dp= —1iS1p—g,78)p—gskSkp, ..v.uceeunn.. (111.)

and the only special case is when two of the roots become equal.

An arbitrary self-conjugate function involves only six con-

stants ; the three roots and three numbers to fix the directions of
the axes.

Ex. 1. The axes of Vep are ¢ and ¢+ —1¢", where ¢ € and € are
mutually rectangular, and where Te'=Te".

[Note that (€ ++—1¢"?=0. The imaginary axes are the vectors to the
circular points in the plane Sep=0. See Art. 84, Ex. 8, p. 126.]
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Ex. 2. Find the self-conjugate part of the function

. $p=a'Sap+BSBp+7y'Syp,
and also its spin-vector.

Ex 3. If a self-conjugate function transforms a given vector « into a
given vector o, it transforms any other vector B(=oB) into a vector,
B'(=0¥") terminating on a fixed plane.

[Here Saf’=8d¢'f3, and o, o’ and 3 are given.]

Ex. 4. Given that a self-conjugate function renders a parallel to o’ and
B parallel to 3, it renders y parallel to a fixed plane.

[The conditions of self-conjugation require SB3y'Sya'Saf =Sy B'Say'SBa’.]
Bx. 5. The axes of a function are mutually rectangular. It is self-
conjugate.

Ex. 6. Two axes of a function are at right angles. The spin-vector lies
in their plane.

[S717:=0, Sy;y,=0=Sy,¢y =Sy, ($-2€)y,, ete]
Ex. 7. Prove that the quaternions
q1=(PA. Vuvr+dp. VVA+dr. VAp) : SAuy,
¢=(A. Voudpv+up. Vévedr+v. Voidu) : Shuy,
are invariants.
[Verify that ¢, =m"+ 2, go=m'—2¢e.]
Ex. 8. If the vectors a, 8 and y are mutually perpendicular,
Valga + V19 + Vylpy=0,
when ¢ is self-conjugate.

Ex. 9. The planes containing a pair of axes of a function and the
corresponding pair of axes of its conjugate intersect in the vector (¢p—g)e,
where ¢ is the spin-vector and g is a latent root.

Ex. 10. The vector to the common orthocentre of the spherical triangles
determined by the axes of a function and its conjugate is

UVede.
Ex. 11. The spin-vectors of coaxial functions lie in a fixed plane.
Ex. 12. In terms of the roots and axes
2eSy17273=(92—93) V1S y2Ya+ (95— 91 Y25 vs71+(9:1 = 92) YsS71172
Art. 68. It happens not unfrequently to be necessary to
discriminate between the parts of v, x, and of the invariants
which arise from the self-conjugate part of ¢ and those which
depend on e. We have
YVAu=V(@ - Ve)A(®—Ve)u
=PVAu—V. VA . Pu—~VEAVeuu+ V. VA Veu
=TVAu+ASePu — uSeP\ —eSehu,.

the terms — eSAPu+ eSuPA cancelling.
1.Q. G

Kl
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This easily reduces to
Ap=Yp—VPep—eSep. erririnininiannanes (1)

Thus the spin-vector of - is —Pe or — ¢e.
Operating by ¢ or &+ Ve we have

mp=Mp+Ve¥p—PVPep— VeVdPep — PeSep,

and if we notice that SVPep=Ve¥p (Ex. 7, Art. 65), this reduces
without trouble to

m=M—SePe or M=m+Sepe ...evverrnrnnnnn (L)

where M is an invariant of ®. Changing ¢ into ¢+-c, and
therefore m into m+m'c+m”c?+¢® ® into &+c¢ and M into
M+Mc+ M’c+c3, we see by (11.) that

m'=M—e or M=m'+¢ and that M"'=m". ..... (1L

ART. 69. We shall give a few examples of the geometrical
meaning of the invariants of a linear vector function. (Art. 65
@v.).) :

(1) The invariant m” vanishes if the function ¢ transforms a
pyramid into another having its edges on the corresponding
faces of the old.* If the vectors a, 3, v are along the edges of a
pyramid, and if ¢a is coplanar with 8 and vy, ¢ with y and q,
and ¢y with ¢ and B, 1t is obvious that m” vanishes. Con-
versely if m” vanishes we can determine an infinite number of
pyramids which transform into others having their edges on the
faces of the originals. For assuming arbitrarily a« and (3, the

equations SepaBy =0, SapBy=0, cerrrrrrrrrrrrrnnn. (L)
determine the direction of y; and the condition m”=0 requires
SaB¢y =0.

(2) The invariant m’ vawishes if ¢ tramsforms a pyramid
into another having its faces through the edges of the old. The

roof and the converse are the same as that just given.

(3) The sum of the projections of vectors transformed from
mutually rectamgular unit vectors on the corresponding unit
vectors is constant :

m” = —~SUagUa—SUBpUp—SUy¢Uy if UBUy="Ua....(IL)

(4) The sum of the squares of vectors transformed from mutu-
ally rectangular unit vectors is constant :

m(¢'p)= —Z(¢pUa)= —=SUa¢'¢Uq if USUy=Ua ...(11L)
where m”(¢'¢) is the first invariant of the self-conjugate function
¢'¢-

# In other words if ¢ transforms three planes into planes intersecting in pairs
on the original planes. .
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(5) The sum of the squares of the projections, on any fixed line,
of wectors tramsformed from mutually rectangulor unit vectors
18 constant. If X is the vector on which the others are projected

ZBApUap=Z(SUagpA\P=T¢A% .....eivninen (v.)
(6) The swm of the squares of the projections on a plame is

constant.
Similar remarks apply to vector areas VopUagpUS, ete.

Bx. 1. If the sum of the square roots of the latent roots of ¢ is zero,
it is possible to find an infinite number of pyramids (oaBc) which convert
into others (0A'B'C’), so that intermediate pyramids (oaBc,) can be drawn
having their three edges in the faces of the first, while their faces contain
the edges of the second. .

1 1 1

[Here S¢tafy=0, S¢iBya=0, S¢¥yaf=0, and Sad*Bpiy=0, etc.
See the next Article and the Appendix to new edition of EZ;ments of
Quaternions, vol. ii., note v.}

ART. 70. The square root of a linear vector function may be defined as
a linear vector function, which, operating twice in succession on any vector,

produces the same effect as the given function. Writing then qS’l’ for the
square root of the function ¢, we have, if y,, vy, and vy, are the axes of

4&, and if A, A, and 44 are its roots,
1 1
D y1=lyys, (P21 =A 2y =PY1s e (1)
1
and consequently the axes of ¢* are also axes of ¢ (see Ex. 2, Art. 66), and

the squares of the latent roots of 4)’% are the roots of ¢. In general, then, a
function has eight square roots answering to the double signs attributable to

‘ql%, g{l“, g;}. It does not follow conversely, that the axes of ¢ are axes of <;l>%.

As an example, let ¢ have equal roots, and let it have indeterminate axes,

so that (¢ —g)(wy;+¥y;)=0 where x and y are arbitrary, g,=g, being the

repeated root. A square root of the function may have three distinct
1 1

roots +glé, —9:% ¢5°. In this case there is an infinite number of square

roots, because we may select any vector xy;+yy; to be an axis of ¢’%
1

corresponding to +g,% and any other vector 'y, +y'y, may be selected as the

axis corresponding to —g,®. For real square roots, the three roots g,, g,
and g, must of course be positive.

The following resolution of a linear function ¢ and its conjugate is
sometimes useful—for example, in the theory of strain. It is due to Tait,
to whom is also due the conception of the square root of a linear vector
function.

Let ¢, j, £ be the mutunally rectangular axes of the self-conjugate function
¢¢’, and let a?, b2 ¢ be its roots. Reducing ¢ to the trinomial form
(Art. 62), Sp=aiSTp+biS p+cASED, cevrreereenn
where ¢, #/, ¥ are to be determined, we have ¢i=—a7, ¢=—1b and
¢'k=—ck'. These give ¢pp'i=—a?.72—abj. Sy —ack.Sk, ﬁut 7 is by
hypothesis an axis of ¢¢’, so that ¢p¢'?=a%. Consequently we must have
%= -1, 8¢y=8F =0, and in fact ¢, j’, ¥ form a mutually rectangular unit
system of vectors. Thus in particular ¢¢'= —ai, and ¢'¢pt'= —agi= +a%,
and thus it follows that ¢, 5/ and % are the axes of the new self-conjugate
function ¢’'¢h, and that a?, b? ¢? are also its roots.
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Let ¢ be a conical rotation which renders* 7, j, & parallel to 4, j, & We
have by (11.),
Pp=2aiSqiglp=2aiSig pq ;

and therefore by the definition of a square root,

1
dp=(¢p¢)F.q7lpg and Fp=g.(F) . g5 orrrrrrcenn. (1)
and from these we also deduce '
-1
gPg =0 . (PP TP wrreiriiiiiiiiiiiiiiiaees (1v.)
In like manner we may prove that
1 1
Gp=p 1. (PP)p.p, Pp=(P'D) . PP i (v.)

and thus we can reduce the effect of a function ¢ to a rotation preceded or
followed by the operation of a self-conjugate function.

ART. T1. We add one or two miscellaneous propositions respecting two
or more functions.

The functions ¢, and ¢,¢ formed by taking the products of two functions
have the same symbolic cubic. For

b py=9dy it PPy=gy, cerriiiiiiiiniiiiis (1)

and thus the functions have the same roots and the axes (y) of ¢, are
deducible from those of ¢, by operating with ¢,
In particular ¢, "', has the same symbolic cubic as ¢, and thus any
peculiarity in the nature of one function occurs also in that of the other.
Any two functions may be reduced simultaneously and generally in one
way to the forms

dp=aSAp+ BSup+ySvp; $p=aaSAp+bB8up+cySvp. .......(IL)
Assuming the possibility of the reduction, it appears that
S Vuv=adVpr=auSAuy, etec.,
and thus the vectors V Ay, etc., are the axes of the function ¢~1¢, and a, b, ¢
are its roots. If both functions are self-conjugate, we must have
Val+VBpu+ Vyr=0, aVadl+bVBpu+cVyr=0,
VoA _VBp_Vyv_q

or =
b—c c—a a-b "

and therefore for self-conjugate functions
Pp=ASAp+pSup+1vSvp, Pp=arSAp+buSpp-+erSrp, ..uueuin. (111.)
and further it is evident that
SVurdVid =0, SVurd VyA=0, etc.

Tt is sometimes necessary to invert the function ¢+ ¢¢, and the auxiliary
yr of this function is defined by

Y Vaf=V(¢'+td)a(P +1d)B=AVaB+tFVaB+AVaf...... (1v.)
where ) C WVaB=V¢ad/B+VP/adf. e (v.)
The invariant m, s M= AU+ L2 ME i, (vr)

+ We must have ik’ = — 1 =4k, but this can always be secured by attributing
proper signs to a, b, ¢. If i'j/k’ were +1, we should not be able to rotate the
vectors into ik, for qig~1. gjq" . qkq '=q.Gk.q 1= -1.
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where m and m, are the third invariants of ¢ and ¢, and where [ and [, are
the two new invariants

ISafy =3S¢adBdy, 1Safy=SShadBey. cverrmrersns (viL)

Ex. 1. The locus of axes of the functions ¢+¢¢p, where ¢ is a scalar
parameter is the cubic cone
Spppd.p=0.

{If p is an axis pp+2pp=gp. The surface represents a cone, as it is inde-
pendent of Tp.]

Ex. 2. The axes of functions of the family ¢ +t¢, form co-residual triads
on the cubic cone.

[The quadric cone SAppp=0 in which X is arbitrary cuts the cubic in the
three axes of ¢ and again in three lines in which it cuts SAp¢,p=0, as we see
by substituting ¢p=zp+yA in the equation of the cubic. The remaining
intersection of the quadric cones is p|| A. The cone SAp(p+1p,)p=0 passes
through the axes of ¢+¢¢, and through the three lines above mentioned, so
that these three lines are the residuals of every triad of axes (Salmon’s Higher
Plane Curves, Art. 154). For other properties see Quaternion Invariants of
Linear Vector Functions, Proc. R.I.A., 1896.]

Ex. 3. Prove that the invariants { and /, are merely multiplied by a
scalar when ¢ and ¢, are replaced by ¢,bd, and bbb

[The scalar is the product of the third invariants of ¢, and ¢,. This very
general invariantal property leads to many theorems. See Phil. Trans.,
vol. 201, Part VIIL, sections iii. and x.]

Ex. 4. Prove that the function ®VafB=V¢'-lad 1B+ Ve, lad1f is
co-variant with ¢ and ¢.

[Making the substitution of the last example, ¢'~! becomes ¢, 1¢'~1ep,
and the function ¢ changes into m;'m,~1¢p,Pp,.]

Ex 5. If a || Vpdyp show that p|| Vo 'odyo;
and more generally if o is connected with p by the chain of relations

P Vpdopy  py Il Vbgpiupys vv 0 1| VibanspnsPanprss
prove that an analogous chain of relations connects p with o.

[The second part of this example is related to the theory of the
Cremona transformations connecting vectors p and o, the direction of a
vector (o) being connected by a one-to-one relation with that of a vector (7).]

Ex. 6. If ¢(p,¢) is a linear and vector function of p and also a function
of the scalar ¢, the equation
Vog(p, )=0

represents a cone whose order is the number of values of ¢ which satisfy

S)"d)l()\; l)d)’{d)l()\i t)v t}=07

A being any constant vector.

«Bx. 7. The equation

V(p-a)(p, =0
represents a surface which meets an arbitrary right line V(p~[)y=0 in as
many points as there are values of ¢ which satisfy

S(B-a)yb(B, )Syd(B, ) b(y, H=8(B—a)yd(y, )S(B—- ) (B, 1) b (7, 1)-
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EXAMPLES TO CHAPTER VIIL
Bx.1. Find the auxiliary functions X and v and the invariants of the
function
dp=2ZmVaVpa.

Ex. 2. Invert the function ¢p+ VaVpa where ¢ is a given function and
where a is a given vector.

Ex. 3. If ¢ p=0a""Vagp show that the conjugate function is
$ip=¢Va~1Vap,
and prove that the spin-vector is e—§ Va~l¢'a.
(a) Show that the auxiliary ¥ function of ¢,+c¢ is expressible in either
of the forms YaSa-lp+c(xp— VdaVap)+ep
or (W +ex+Dp=Vea(g +0Valp,
and show that the third invariant of the same function is
Sat(Yr+ex +cPa.
() Prove that the axes of ¢, are determined by substituting a root of
the equation cSa(y+cx+¢?)a=0 in (¢p+c)~'a.

Ex. 4. If ¢p=¢p+aSBp, show that Y p=Yp+VBHVap and that
m,=m+SBya.

Ex. 5. Show that the v function and the third invariant of ¢p—VBVap

may be reduced to the forms
V¥p—xoSBp—V¢'BVap+aSBpSaf

and m—SBpxa+8SBpaSaf.

Ex. 6. If ¢,=¢+¢, ete, show that

Xe=X+2¢, m/=m'+2m"c+ 32, m=m"+3c.
Ex. 7. Prove that
V.dpVap.B=x'V.Vap.B-V.Vap. 0.

(a) Show that the conjugate of this linear function of pis V. dVBp.a,
and prove that the spin-vector is $¢'Va3— aSef3 where ¢ 1s the spin-vector

of ¢.

(b) Show that the auxiliary ¥ function is aSBpSayS.

(¢) If V.¢Vap.B=0, show that p=xa-$'o(SayF)~ where z is an
arbitrary scalar. Deduce this result by the aid of the implied relations
Sapdp'c=0, 8LGr=0.

Ex. 8. Prove that

V. $(p)= ~ZVBy . da(Safy)™
where a, 8 and y are arbitrary vectors. .

(a) Show that
V. (p)= —Za. V¢'Be'y.(Safy)™
(b) Express these quaternions in terms of the scalar invariants and the
spin-vectors,
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Ex. 9. Three lines are defined by the pairs of vectors (o, 7y), (0'g 7o),
(03, 75) as in Art. 36, Ex. 4, show that any line which is met by all the
transversals of the given lines may be represented by

og=¢r where Srdr=0,
the linear function ¢ being defined by the equations
oy =91y Ty=¢T1y 03=¢Ts
(@) The transversals of the same set of lines may be represented by
a'=—¢'t where Sr'¢'t'=0,

the function ¢’ being the conjugate of ¢.

(b) Writing

o=¢r=Vpr

and expressing that the function ¢()—Vp() has a zero root, the locus of

the lines is found to be
S(p- ) blp—e)=m+Seghe

where m is the third invariant of the function ¢ and where ¢ is its spin-
vector.

(¢) The same equation is satisfied by the transversals.

(d) Show that four given lines have in general two common transversals;
and that these are determined by

a'=—¢'v where St'(o,~¢1)=0, StP'T'=0,
the fourth line being defined by (o, 7).

Ex. 10. Given any four pairs of vectors, (3, a.), where n=1, 2, 3 or 4,
show how to find a linear vector function ¢ and a vector y so that

Bn = ¢an + e
Ex. 11. Given any six triads of vectors (ym., Bn @) where n=1,2, ... 6;
determine two linear functions ¢, and ¢, so that ’ ‘

Y= ¢lan + ¢2Bﬂ-

EBx. 12. Verify by assuming p=wza+yB, SAe=0, SA3=0, that the
solutions of the equations SAp=0, Spdpp=0 may be written in the form

p=Va +a(SAYA)}
where a is any vector perpendicular to A.
Ex. 13. Given two tetrahedra a’s’c’n’ and ascp, find a point E and a
function ¢ so that
EA'=¢.EA, EB'=¢.EB, EC'=¢.EC, ED'=¢.ED.

(a) Show that corresponding faces of the tetrahedron determine with the
point E tetrahedra having a comnion ratio of volumes.

(b) If the lines joining corresponding vertices are generators of the same
system of a hyperboloid, it is possible to find four scalars , m, n, p so that

Uo —a)+m(B' = B)+n(y - y)+p(@E - 8)=0;
IVao' +m VB +aVyy +pdd'=0.
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(¢) These scalars are independent of the origin, and if the origin is taken
at the point E, we shall have :

lat+mB+ny+p8=0, lo'+mf +ny'+pd=0

for an arbitrary pair of tetrahedra, while if the lines joining the vertices are
generators of the same system of a hyperboloid, we shall have in addition

Vo' +mVBE +nVyy' +pVéd=0.

Ex. 14. Identify the expressions

s By v, 842, 172
p=(¢+t)“(/\+t#)=w——dmg—3

where ¢ is a scalar variable, and show how to express the function ¢, and
the vectors A and p in terms of the vectors a, 3, v and §, and the scalars
a, b, ¢ and d.

'Bx. 15. Of what nature are the curve loci
p=($+0Na+1B) and p=(b+0)(a+1B)1?

"Bx. 16. Gauss has described, in an unpublished ms. of the year 1819, an
operator which alters the size of any figure in a given ratio, and which turns
the figure through a given angle round a given line through the origin.
He proves that an operator of this kind depends on four numbers, that
successive operators compound into a single operator of the same kind, and
that the order of the operations is not commutative.

(@) Show that Gauss’s operator may be expressed in quaternions by
eq( )q7", ¢ being a given scalar, and g a given quaternion.

(b) Hence prove his theorems.

(¢c) Compare and contrast the lack of commutation in the order of these
operators, or in the order of the operators 2 and cos. in the simple inequality

cos 22 = 2 cos &,
with the lack of commutation in the multiplication of quaternions.

(d) Prove that the sum of two Gaussian operators is an operator of a
distinet kind.

() Prove that a sum of at least three Gaussian operators is required to
adequately express a linear vector function. (Bishop Law’s Premium, 1899.)

Ex. 17. Unit vectors a, 3 and 7y are directed respectively from the centre
of a regular solid to the middle point of a face (or to a vertex); to the middle
point of an edge of the face (or of an edge through the vertex); and to a
vertex on that edge (or to the middle point of a face containing the edge),
prove that + 2

.y:s = :80'”’

where n=3 for the tetrahedron, n =4 for the cube and octahedron, and n=5
for the dodecahedron and ikosahedron.

(@) Hence show that all rotations which leave unchanged the region
occupied by the solid mly be represented by powers and products of linear
vector functions A, k and ¢ which obey the laws*

At=1, k3=1, =1, A=w, (=3, 4 o0r5)

*See Hamilton on the Icosian Calculus, Phil. Mag., Dec. 1856 ; Proc. R.L.A.,
Vol. VL., pp. 415, 416. See also Burnside’s 7'heory of Groups, Arts. 200, et seq.
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Ex. 18. A real linear function which is a symbolical 2 root of unity, or
which satisfies the equation
$=1

is of the form
bp . Safy= (a cos 2?—: — Bsin gn’:) SByp
+ (a sin —2;? + B cos 2:) Syap+ySafp,
where a, 3 and y are arbitrary real vectors.

Ex. 19. The result of eliminating the vector & between the equations
S8ma=0, SWPp=0, SWHT=0
may, when ¢ is self-conjugate, be expressed in the form
SayraSppp — mSap?=0.
(a) In the same case,
S¢paV. Vadp=VapVadp=pSayra - YaSap.
(6) And moreover * ‘
ShparShpop=SpppSVardVapu+SAYpSep? ~ SauSApSap — SoyASupSap
+SayraSApSup.

* These examples are quaternion equivalents of the transformations in Arts.
383, 385 and 390 of Salmon’s Higher Plane Curves.



CHAPTER IX.
QUADRIC SURFACES.

ArT. 72. If f(p, p) is a homogeneous, rational and integral
scalar function of the second order in a variable vector p, so that

f(a+tﬂ’ a+t:8) =f(a’ a)+t(f(ax B)'l"f(le’ a))+t2f(/8’ /8)’ (I)

where a and 3 are arbitrary vectors, the equation

Sflp, p)=const. .....cooeviiiiiiiiininnn. (i)

represents a surface of the second order, referred to its centre as
origin. For by (1.) we find a quadratic in ¢ which determines
two points in which an arbitrary line p=a+13 cuts the surface;
and on putting =0, the roots of the quadratic are equal and
opposite, showing that every chord through the origin is bisected
at that point.

The coefficient of ¢ in (1.) is linear and homogeneous both in «
and in 8, and as it involves these vectors symmetrically we may

write
Fla, B)+F(B, a)=28apB=2SB¢a ..coeevvrrrnnns (1rL.)

where ¢ is a self-conjugate linear vector function. Thus the
equation of the central quadric is expressible in the form

fp, p)=Sppp=const. .....c.cooeninien. (IV)

Without loss of generality we may suppose the constant incor-
porated in ¢, and we take as the equation

in which, as we have said, ¢ is self-conjugate. Of course, and
without gain of generality, we may suppose ¢ not to be self-
conjugate in (v.), for the spin-vector automatically disappears
from an equation of this form (Art. 67); but this is very likely
to lead to mistakes in further developments, and it adds needless
complexity.
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Art. 73. Equation (v.) of the last article gives
| ' 11
Tp2SUp¢oUp=-—1 or —SUp¢Up=T—p'2=ﬁ ......... (1)
if 7 is the length of the central radius parallel to Up.
For a closed quadric, an ellipsoid or sphere, 7% is always
positive, as every line through the centre meets the closed
surface in real points. For a hyperboloid, the radius becomes

infinite for an edge of the cone
SUp¢Up=0 or Sppp=0, ccoeviiiiiiiiiinn (11.)

the asymptotic cone of the surface. The sign of the expression
72 or —SUpgUp changes on passing through a zero value, and
the expression remains with changed sign until it passes again
through a zero value. So on one side of the cone Spgp =0, lines
meet the hyperboloid in real points, and on the other side the
points are imaginary and the corresponding vectors are of the
form p=a/—1p, (Up=Up’, Tp=a/=1Tp'), where p’ is a real
vector.
The vectors p’ terminate on the quadrie

Sppp=-+1 coiiiiiiiiiinaii (111.)

—the conjugate of the quadric Spgp=—1.

For the sake of brevity we shall write generally +* for the
square of the length of the radius whether that square be
positive or negative, the interpretation in the latter case being
that just given.

An arbitrary right line p=a+%8 cuts the quadric Spgpp= —1
in the points determined by the roots ¢ of the quadratic

Sapa+2tSapB+t28B¢B=—1. ..cccveirrnnnn. @av.)

For a real and positive root, the point is in the direction +UB
from the extremity of a, and for a negative root it is in the
direction —UB. For equal roots, the line touches the surface;
and for imaginary it cuts it in imaginary points.

The locus of the middle points of chords parallel to B is the
diametral plane .

for if « is the vector to any point in this plane, the roots of (1v.)
are equal and opposite. If the diametral plane of 3 contains the
vector a, that of a contains B in virtue of the self-conjugate
property of ¢, for then

SapB=SB¢pa=0. ..cc.oeiiriiiiiiiiinnns (V1)

The equation has equal roots if

SBpB(Sapa+1)—(SagpB)2=0, ......c........ (VIL)
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and regarding 8 as variable, this is the equation of the tangent
cone from the extremity of the vector a referred to that
extremity as origin, for it is.independent of TB. Replacing
8 by p—a, the equation of the same cone referred to the centre
as origin easily reduces to

(Sp¢p+1)(Sa¢a+l)—(Sp¢a+1)2=0; ......... (viiL)

and the form of the equation shows that the cone touches the
quadric along its intersection with the plane

‘ Sppa=—1 . i (1x.)
—the polar plane of the extremity of a.

If the vector a terminates on the surface, the equation of the
cone becomes the square of the equation of a plane—the tangent
plane at the extremity of a,

Sp¢a= -1, Sa¢a= =1 (X))

Allowing on the other hand « to vary arbitrarily in the quad-
ratic equation, and putting for greater clearness a=p'=p—1{8,

the vector p’ being drawn from the extremity of the vector {3
while p is drawn from the centre, we see that

Sp'gp=—1—15B¢pB if SpPdpB=0. ..ccouurr... (X1.)
These two equations jointly represent the section of the quadric
by the plane SPAB=tSBAB, - vevverrrrereiirerrs (XIL)

and the centre of the section is the origin of vectors p’, or the
extremity of the vector ¢3. Hence the locus of centres of
sections by planes parallel to (v.) is the line through the centre
parallel to B, as indeed might have been proved directly from (v.).
The section (X1.) is similar to the parallel central section of the
quadric, for if 7 is the radius of the section parallel to p” and
that of the quadric,
2 2
U Uy =Ty = 1+ 0SB =115
if b’ is the radius of the quadric parallel to .
The equation of the normal to the quadric at the extremity of
the vector a is

- (XIIL)

p=a+tiapa, or Vip—a)pa=0; ..ccoccunies (x1v.)
and the normals which pass through a given point § are six in

number and are determined by the equation
18 =p+x¢p, or V(,B—p)¢p= 0, and Spqu =—1. (XV)

To solve these equations we have
p=(1+z¢)"'8, where SBp(1+x¢)-?B=—1,....(XVL)
because Spgpp=—1, and on inversion we find a sextic equation
n .
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Ex. 1. Prove that the rectangle under the intercepts from the extremity
of a on the line p=a+¢8 is
(Ta? - a%)b?a’~?

where o’ and b’ are the central radii parallel to o and (.
[#:2,T3%=(Saga+1) : SUBSUL.]
Ex. 2. The ratio of the rectangles under the intercepts of lines drawn

from a fixed point is independent of the position of the point, and is equal to
the ratio of the squares of parallel central radii.

Ex. 3. Chords drawn through a point are divided harmonically by the
quadric and the polar plane of the point.

[Put I’QT“:%—*_% where ¢, and ¢, are the roots of the quadratic (1v.).]

Ex. 4. TFind the central vector perpendicular on the tangent plane at
any point, and obtain the locus of the feet of central perpendiculars, or the
central pedal surface.

[@=-(¢o)?; a=-¢ m"; Spl¢lmt=-1]

Ex. 5. Prove that the central pedal surface is the inverse of the reciprocal
quadric.

Ex. 6. Prove that the ratio of the perpendiculars from a point A and
from the centre on the polar plane of Bis equal to the ratio of the perpen-
diculars from B, and from the centre on the polar plane of a.

Ex. 7. Find the locus of the poles of tangent planes to the surface
Spéyp= —1 with respect to the surface Spgyo=—1.

Ex. 8. Find the pedal surface for an arbitrary point.

Ex. 9. The feet of the normals which pass through a given point are the
intersections of a twisted cubic with the quadric.

[Compare (xv.) and Art. 65, Ex. 8, p. 93.]

Ex. 10. The normals through a given point lie on a quadric cone
S(p— B)pBPp=0, and the feet of the normals lie on the cone SBpdp=0.
() Both these cones have edges parallel to the three-axes.

Ex. 11. Find the condition of the intersection of normals at two points
o and .

Ex. 12. Find the equation of the polar plane of « to the quadric
Spo pyp= —1, ¢p,p, being the product of two linear functions.

[Note that ¢y, is the conjugate of ¢;¢,.]

Ex. 13. Prove that the polar line of p=a+¢3 with respect to the
quadric Sppp= -1 is
PB+s

PYVR
ArT. 74. The central plane SAp=0 is the diametral plane of
chords parallel to ¢~*A, as appears on comparison with (v.) of the
last article. The locus of the centres of sections by planes
parallel to S\p=0 is the right line

Vg A=0 ceveereeeenrenreniereereenenns (1)
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The vector to the pole of the plane (Art. 73 (1X.))

SAp=—=1 18 ¢} erveiriiiiennnn weenn(IL)
and the plane touches the quadric if (Art. 73 (X.))
SAG™ A= —1, it (urL)

and as A varies this is the tangential equation of the quadric.
But SA\p=—1 is the polar plane of the extremity of A with
respect to the unit sphere, To=1 or p*=—1, and the equation
(1) may therefore be regarded as that of the reciprocal of the
quadric with respect to the unit sphere.
The vector to the centre of the section by Sxp= —1 is by (1)
¢~ 'A ;
Shgrin o (v.)
the tensor being determined so that this vector may terminate in
the plane S\p= —1; and on comparison with (XIIL) of the last
article, the ratio of the radii is given by

72 14Sh¢-IA
1—3=TN¢—>?T' ............................ (v)

Ex.1. By direct comparison of SAp+1=0 with (x11.) of the last article,
find the vector (1v.) of the present.
Ex 2. Find the reciprocal of the surface with respect to an arbitrary
sphere.
Bx. 3. Find the lines in which the plane SAp=0 cuts the cone Sppp=0;
and show that they are parallel to
VAda+a(SAYA)E

where « is an arbitrary vector in the plane.
[Assume the lines to be a+ta’ where Vaa'= A and actually solve for ¢ on

substitution in the equation of the cone.]

Ex. 4. Prove that the tangent of the angle between the lines in which
the plane SAp=0 cuts the cone Sp¢p=0 is
TAEMWA)?

SAxa

[If a+t0’ and a+tya’ are the lines, calculate o+ (¢ +2,)Saa’ +1¢2,02 and
(t;—ty)Vaa']

Fx.5 Show that the lines in which the plane SAp=0 cuts the cone
Spdp=0 are parallel to the vectors

tan u=2

VA[VYAL £ $ASAY .
ART. 75. The vector radii a and B of the quadric are con-
Jjugate if SaB=0, «erereceerrirriiinriiinieanns (1)

that is if one lies in the diametral plane of the other (Art. 73
(vL)); and it follows geometrically, or directly from the equations

of the tangent planes
Sppa=—1, SppB=—1; Saga=—1, SB¢pB=—1,....(1L)
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at the extremities of these vectors, that each vector is parallel to
the tangent plane corresponding to the other.

If the vectors are perpendicular as well as conjugate, they are
the principal axes of the section by their plane, and the condi-

tions are SaB=SaB=0. ..oovvrrrrrrrrrans. (ir.)
From these we see that
Bl Vapa, all VBGB; «eveereeriiaaaaeeenns (1v.)

so that if one vector is given, the other is determinate; or given
that a line is to be the principal axis of a section, the other prin-
cipal axis is determined by (1v.), and the normal to the section is
parallel to

VafBltaVaga |l ¢pa. at—aSaga i paTa®*—a. .......... (v)

Thus to determine the principal axes in a central plane Sxp=0,

we have .
paTa®—a||X or al[($Ta®?—1)"1N; .oiinnis (V1)

and because Sha=0, we have if To?=1?2,
SA(pr2—1)"]A=0 or rSAYA—rISAYA+AZ=0, ....(VIL)
using the formula of inversion (Art. 65). Thus a quadratic in 72
is obtained and substitution of its roots in (¢r2—1)-IA gives the
directions of the vectors required.
The principal axes of a surface are normal to the tangent
planes at their extremities, so that

Vopgp=0 ccoovviiniiiiniiiiininnn. (viL)

for a principal axis. These are the axes y,, v, v, of the
function ¢.

Ex. 1. Find the maximum and minimum radii in a central section.

[Here SAp=0, Sp¢p=—1, Tp=max., and on differentiation, SAdp=0,
Sppdp=0, Spdp=0, so that the three vectors A, ¢p and p are coplanar, or
(p+x)p=yA. Operating by Sp, we fall back on (vL.).

Ex. 2. Find the maximum and minimum radii of the quadric, and show
that their directions are the solutions of

Vpdp=0.
Ex. 3. The sections by planes perpendicular to A are rectangular

hyperbolas if
SAXA=0.

Ex. 4. The equations (1v.) fail in one case.
[Where the vector a is a principal axis of the surface.]

Ex. 5. In general, the three radii are coplanar which are axes of sections
having any three mutually rectangular radii as the remaining axes.

[Because ¢ is self-conjugate, Va~ldpa+ VB1¢B+Vy1dy=0if o, 8 and y
are mutually perpendicular (Art. 67, Ex. 8, p. 97).]
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Ex. 6. The sum of the squares of the reciprocals of three mutually
rectangular radii is constant.

Ex. 7. Interpret geometrically the equation
1\~1
sA($- %) A=0,

which asserts that the plane SAp==0 cuts the quadric in a section having a
principal axis equal to 7.
[This expresses that the plane touches a certain cone.]

Ex. 8. Central planes cut a quadric in sections of given area 4. Prove
that their envelope is the cone

a2\~1
$p(¥-7) p=0.
Ex. 9. The axes of the section by the plane SAp+1=0 are the roots of

the quadratic
m+ S)\\[/)\)‘l _
s\ (¢- L ) A0
Ex. 10. The area of the section made by the plane SAp+1=0 is
—r TA(m+SAYA)
(~8apy?

ART. 76. From any pair of conjugate radii « and B we can
derive a third radius conjugate to both so that

SIB¢V = S'y(l)a = Sa(l)B =0, tirreeiiiiiennee (I)
We may in fact regard the two conditions in y as equations of
planes, and
v VoapBliyVaBllg " VaB .cveeiiinnnnn. (1)
With proper tensor the radius vy is
-Wq
y= J(—S(PVa,B¢'[?1Va,3)' .................. (11L)

In terms of the three mutually conjugate radii, the equation
of the quadric is

(S,@‘yp)2+(Syap)2+(Sa,3p)2=(Saﬁ'y)2 ............ @av.)

as appears on substituting p=ZaSByp : SaBy in Spgp=—1 and
attending to the conditions.
Writing (compare Art. 70)

a=¢td, B=¢7B, y=¢y i, ()

it appears by (1) that the vectors o, B and v are mutually
perpendicular, and because a, 8 and vy terminate upon the
surface Spgp= —1, it further appears that o, B and v are
unit vectors. The theorems of Art. 69 therefore apply, the
vectors a, @ and y being the results of operating by a linear
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function (¢"i’) on three mutually rectangular unit vectors.
Thus the sum of the squares of three mutually conjugate radii
is constant, ete.

Ex. 1. The radii o, 3, y being mutually conjugate, prove that
__VBy = Vye __Vep.
pa= —SU-,B‘)/’ d)B_ —SGIBY’ ¢'Y— Sdﬁ‘}’ ’
and that
:%=Ta2+TB2+T72 ; %:TV,B72+TV'ya2+TVa,82 ; m=(Safy) 2

Bx. 2. The locus of the extremity of the diagonal of a parallelepiped
having three mutually conjugate radii as conterminous sides is

Sppp+3=0.

Ex. 3. The locus of the mean point of a triangle formed by the
extremities of mutually conjugate radii is

Spdp +%=O.

Ex. 4. The locus of a point from which it is possible to draw three
tangents parallel to mutually conjugate radii is

Spep+2=0.
Ex. 5. In the last example show that a point on the locus is
b=t B+
and that the points of contact are the extremities of
FEH, So+a, b

ARrT. 77. To find the cyclic planes of a quadric we have to
throw its equation into the form

Sp¢p=gp2+28>\pslup= —1 (I)
or to determine g, A and u so that for all vectors p,
Dp=9gp+ASup+uSAp. ceiiiiiiiii (11.)

It follows that ¢ —g must reduce every vector to a fixed plane,
that of X and u. The scalar ¢ must therefore be one of the
latent roots of ¢, say g=g,, and in terms of the axes,

Sp(p—g,)p=— (91— 92)(Sip)2— (95— g5)(Skp)? = 2SApSup (1IL)
because dp=—19,5%0—79,57p — kg;Skp.

Thus

t?—Q——ng—ngJgg—gzk, %f_l:“-=~/92'—91i_‘\/93_92k (v
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where ¢ is arbitrary. The transformation is real only if

1Y > Ps OF GG 1 cennenvornnnnnnnns (v.)
The cyeclic planes S\p=0, Sup=0 cut the surface in circles of

radius 92_5, and these circles are real only if g,>0.
The planes S\p+1=0, Sup+m=0 cut the surface in circles
lying on the sphere
Spgp+1—2(Shp+1)(Sup+m)=0,
or 9p2—28p(lu+mA)—2lm+1=0.
In nearly every problem relating to quadries some valuable
information will be gained by throwing the equation into the

cyclic form or into the focal form of the next article. This
transformation is not generally of any great difficulty.

Ex. 1. Reduce a quadric to the form
T(p—ay=e(SAp+1)(Spp+1).

[This gives Dr. Salmon’s focal property. The locus of the extremity of
the vector a is a hyperbola—the focal hyperbola, and this depends on
equation (1v.).]

Ex. 2. Prove that the roots for Hamilton’s cyclic form are

9y 9+SAp+TAy, g+SApu—TAu

Ex. 3. Any two circular sections of opposite systems lie on the same
sphere.

Ex. 4 If a quadric is a surface of revolution,
VexpVxpyp=(Vp¥py
for all vectors p.
[The self-conjugate function ¢ has two equal roots (¢) and (Art. 66 (x11.),
p- 95)
V(¢p—c)a(d-c)B

is identically zero for all vectors a and 3, or ¥p—cXp+c?p=0.]

Ex. 5. 1If for all vectors p

SpXpyrp=0, or Spdpd?p=0, or Spdpyp=0,
the quadric is of revolution.

Ex. 6. From a fixed point A, on the surface of a given sphere, draw any
chord Ap; let D’ be the second point of intersection of the same spheric
surface with the secant Bp drawn from a fixed external point B; and take
a radius vector AE, equal in length to the line BD', and in direction either
coincident with, or opposite to, the chord ap: the locus of the point E
will be an ellipsoid, with Ao for its centre, and with B for a point of its
surface.

[Elements of Quaternions, Art. 217 (6). See also Lectures, Art. 465. If ¢
is the centre of the sphere, the isosceles triangle acp gives (ﬁ:K%, or
cD= —AD1.CA.AD= —AE"L. CcA. AE, and therefore

DB=CB+AE"l.CA.AE=t+p lkp
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if cB=t, AE=p, cA=k. By the property of the sphere b'B. DB=CB?-cA?= -1},
and by the construction To=Tp'B=T(:2 - «%). Tps~1, or T(pt + xp)="T(:2 — «?).
Squaring both sides, we have Tp?T(:2+x2)+28p.Kxp=T(:*—«*? which
reduces immediately to Hamilton’s cyelic form.]

Ex. 7. Conceive two equal spheres to slide within two cylinders of
revolution, whose axes intersect each other, in such a manner that the right
line joining the centres of the spheres shall be parallel to a fixed right line ;
then the locus of the varying circle in which the two spheres intersect each
other will be an ellipsoid, inscribed at once in both the cylinders.

[Hamilton, Lectures, Art. 496. Taking the spheres to be T(p—ta)=b,
T(p—tB)=>, where a, 3 and b are given and where ¢ is a variable scalar,
we find on elimination of Z,

(P B) (@ - ) (e~ ) =28(a7 ~ B)pS( - B)p.]

Art. 78. To find the right circular tangent cylinders of a
quadric, observe that if the vertex of the tangent cone (Art 73
(viL)) passes off to infinity, the equation of the tangent cylinder
parallel to a is

(Sppp+1)Sapa—(Sppa):=0. .......ccunenenn. (1)

A right circular eylinder parallel to a and of radius Ta-! is
represented by

TVap=1, or (Vap) +1=0, ..ccc.cooinene. (1L.)
and identifying this with (1.) we have to satisfy
(Spga)? 2
=g (Vap) e II1.
Spgp Saga +(Vap) (111
for all vectors p, or what is equivalent we must identify
_ $aSppa _
Pp= Saga aVap. «coceeviinnn. e (v.)
This is identical for p=«; and for p=¢a we have
2
Pla= %%;%‘ —¢a.at+aSaga. .coeiveennninnn. V)

Here then is a linear relation connecting the vectors ¢?a, pa
and o, and it follows (Art. 66) that « must be coplanar with a
pair of axes, ¢ and & suppose, and that (say)

$’a—(95+91)pa+gs91a=0.
This gives on comparison with (v.)
Sapa= —g;9,, Sag?a=(g;+g,+a®)Saga, Saj=0, ...(VL)
and putting p=7 in the identity (1v.), we find
A2= = o tirniienni e (vIL)

The identity is now satisfied for three non-coplanar vectors,
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j, a and ¢a and therefore for all vectors; and if UB=Uga, the

equation of the quadric is by (111.) reduced to
Sppp=b(SpUBR+a(VpUa)P=~1, ............(VIIL)

where a=g, b=9y—91—9s

which is Hamilton’s focal form, if we remark that by (VL)

and (VIL)

_T(¢a)2__Sa¢2a_ o
b= Sa¢a— Saga =9mh"Is

If a =12+ %z we have by (v1.) and (Vi)
at42t=g,, 9.2°+9:7" =301

a=1 93(91—92)_'_]0 91(92—93). ceeereeenenn (IX)
91— 93 91—9s
ART. 79. To find the generators of a quadric, we express
that when we substitute p+ta in its equation, the equation is
satisfied for all values of ¢. Thus

and

Sppp=—1, Sppa=0, Sagpa=0. ...c....oen. (r)
From the second and third of these
Vap=a¢a, Or p==Ta 'patya, «..ocooernrrn (1)

and substituting for p in the equation of the quadric,
—1=228Va '¢papVa lpa=2>mSVa-l¢paVe-la~la
=z'm(SalaS¢pagp la~!—Sa~l¢p " la Saga),

or simply z?m = —1. Thus the equation of the generator is

it being implied ‘by the form of this equation that Sa~'ga=0.
Generators of one system correspond to the sign +, and those
of the other system to the sign —.

Ex. 1. Prove that generators of opposite systems intersect.

Ex. 2. Find the locus of the feet of central perpendiculars on the
generators.

[From the equation p= + \/ —la‘ldua we find o || Vp¢pp, and substitution
m

in Saga=0 gives a quartic cone which intersects the quadric along the
locus.]

Ex. 3. Prove that the locus of intersections of generators which cut at
right angles is the intersection of a sphere with the quadric.

[Note that a central plane parallel to a tangent plane cuts the asymptotic
cone in lines parallel to the generators.]
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Ex. 4. The locus of intersections of generators which cut at a given

angle is
Tdon/ —
tan u=2 m%“—%? Sppp+1=0.

[See Ex. 4, Art. 74.]

ARrT. 80. When the equation of a quadric is given in the form
Sp¢p—28€p+l=0, .......................... (I)

in order to find its centre, or centres, we may replace the
equation by

S(p~w)p(p—w)+28(p—w)(pw —e)+Swpw—2Sew+1=0, ...(I1.)

and if o terminates at a centre the part linear in p—w vanishes,
and o is a solution of the equation

POTE rriiiiiii (1)

Operating by 1, we have
Mew = \Pe, ............................... (IV.)

and the vector to the centre is finite and determinate if m is not
zero. If m is zero and e not zero, the centre is at infinity in
the direction of e, and the surface is a paraboloid. If e is
zero, m must also vanish, and the solution is (Art. 65)

mo=xe+ o, Ye=0, oo (v.)

and the surface has a line locus of centres and is a cylinder,
Vo being parallel to the axis of ¢ corresponding to its zero root,
and the length of \ w being indeterminate. If m’ vanishes,
the function , vanishes identically since ¢ is self-conjugate
(Art. 67), and in fact ¢ is of the form —aiSip. If xe is not
zero, the line of centres is at infinity since (Vv.) can only
be satisfied for infinite values of w. If however ye=0, the

solution is Mmo=etxw, xe=0, civiiiiini, (vL)
and the surface is a pair of parallel planes. More simply when
Pw=— aiSiw=¢ and Xe=ae+ aiSie=0,

equation (IIL) becomes aSiw = Ste.

In the case of the paraboloid, equation (v.) without the
condition e =0, or

mo=xe+uk, Yelk, ¢k=0............... (vIL)

is the equation of the axis, remembering that W || k=uk where
w is an indeterminate scalar. We have in fact on operating
by ¢, m'(¢pw—e)= —1/e, and the term linear in p—w is propor-
tional to Sk(p—w). In like manner it may be shown that (v1)
without the condition ye=0 represents the axial plane of a
parabolic eylinder.
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ART. 81. We propose in this article to give a short account
of the cone of the second degree and of sphero-conics. ~(See
Elements of Quaternions, Art. 196.)

The equations B
Sap+1=0, S;—1=O ....................... (L)

represent respectively a plane and a sphere which passes
through the origin of vectors. Combining these equations so as
to eliminate T)p, the equation

saps§+1=o, or SapSBp+p2=0, or s,epsz+1=o,...(n.)

represents the cone whose vertex is the origin and which passes
through the circle of intersection of the plane and sphere.

The third form of the equation shows that the cone passes
through a second circle, the circle common to the plane and

sphere a
SBe+1=0, S==1=0, .coeveirirnrnrnn... 111,
P P

and thus exhibits the theorem of Apollonius that an oblique
cone having a circular base has a second series of circular
sections.

The second form of the equation shows that the product of
the cosines of the angles between an edge of the cone and the
cyclic normals (Ua and UB) is constant, for this is

SU.apSU.,Bp=Ta_1,8_1; ................... (IV.)

or what is equivalent, if the cone is cut by a sphere concentric
with the vertex, the product of the sines of the arcual perpen-
diculars let fall from any point of the sphero-conic of intersection
on the two cyclic arcs (the great circles in the planes Sup=0,
SB,=0) is constant.

If Up and Up’ are the vectors to any two points P and P’ on
the sphero-conie, and if the great circle PP’ cuts the cyelic arcs
in Q and @, it follows from the second of equations (IL) that
U(UpSaUp’'—Up'Salp) is the vector to one of the points (Q)
and that U(UpSaUp—TUp'SaUyp’) is the vector to the second
point (§), Q being in the cyclic plane Sap=0 and Q" in SBp=0.
Hence, from the form of the expressions for the vectors to these
points, we learn that the are PQ is equal to the arc PQ.

If P’ and P” are two fixed points on the sphero-conic, and if P
is a variable point likewise on the conic; if the arcs PP’ and PP”
cut one cyclic are (Sap=0) in Q and Q’, the length of the arec
QQ" is constant. This follows most easily by producing the
radii of the points P, P and P’ to meet the plane Sap+1=0
of equation (1.) in the points Py, P and P,". It is evident that OQ’
and 0Q’ are respectively parallel to PP, and P.P,’, and more-
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over the angle P,/’P,;P,” is constant since it is the angle subtended
at a point on the circumference of a circle by two fixed points
likewise on the circumference.

Given the cyclic arcs of a sphero-conic and a point on the
conic, the conic is determined by elimination of ¢ from the
equations

SapSHp+ip?=0, SayS,@y+ty2=0, Tp=1,

the vector vy terminating at the given point, and for convenience
the radius of the containing sphere being taken equal to unity.

The three propositions just proved are used by Hamilton to
establish the associative prineiple of multiplication of quaternions.
In the figure the great circles GLIM, CHBG, DAEC are the traces
of the planes of three versors

_OoL _OH __0C
=6 "“oc’ *ToE

Constructing the product rs=OH:OE, the point H is deter-
mined and the sphero-conic HKBF is drawn through the point H
having GLIM and DAEC for cyclic planes. Producing the arcs
CH and EH, the points B, G, F and I are constructed. The point
L is joined to B and LB is produced to K and A. The arc FK
is drawn and produced to M and D. It follows then that the
ares GL and IM are equal and also the ares CE and AD, and
moreover FM =DK and AK =BL by the properties of the sphero-
conie.

We have therefore

OH Ol _OM OI _OM_OK OK OA
7 0E~9°0F 0l "OF OF OD OA"OD
_OK __OL __OL 0G __
=53 %" on "oa op =1

By proving the properties of the sphero-conic without employ-
ing the associative principle, this principle is established since
we can show that for any three quaternions ¢.rs=gr.s.

q.r8=

In addition to the properties just proved for the sphero-conic, it is easy
to see that great circle arcs which intersect at a point on the curve include
supplemental ares (such as ca and aL, Fig. 25) between the points in which
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they cut the cyclic arcs. Reciprocating these properties, the cyclic arcs
become the foci & and r (Fig. 26) of the reciprocal sphero-conic, and if the
two foci and one tangent arc AB are given, the conic can be constructed. If
from any point on the sphere, two tangent arcs are drawn to the curve and
also two focal arcs to the foci, then one focal arc makes with one tangent
the same angle as the other focal arc makes with the other tangent. More-
over opposite arcs of a spherical quadrilateral, aBcp, circumscribing the
conic subtend supplemental angles at the foci.

Fra. 26,

From these properties Hamilton deduces the associative principle. The
versors ¢ and r are represented by the directed angles BAE and B, and their
product ¢r is (Art. 30, Ex. 5, p. 30) represented by the external angle at &
or by the equal angle cep. A third versor s is represented by pcE, and the
external angle of the triangle DEC represents the product ¢r.s (namely,
gr into s). Making ¥cB and CBF respectively equal to the angles of s and
of 7, the point ¥ is found ; and when the sphero-conic having E and r for
foci and AB for tangent is constructed, it follows that Bc and cp are also
tangents on account of the equality of the angles marked » and of the angles
marked s. Again, because cED was constructed equal to the supplement of
AEB, the arc pa will be a tangent to the curve, and Fap will be equal to the
angle of ¢, and pFa will be supplementary to cFe. Hence FADp and pra
represent respectively ¢ and rs, and the external angle of the triangle apF
represents the product ¢.rs. But the angle between pa and p¥ is equal to
the angle between pc and D¥, and therefore ¢.rs=g¢r. s.

To find the locus of a point on the surface of a wnit sphere,
the sum of whose arcual distances from two fixed points, E and
F, is constant, we have in the first place for the cosine of the
sum of the ares,

SU. epSU;;p -TVU. epTVU PP=COS G, .cocviunnnns (V)

or on rationalization, we find the locus to be a sphero-conic,
(SU. ep)2+(SU .qpP—2cosa SU. epS Unp =sina; .....(VL)
since (SU.ep)?+(TVU.ep)?=1. (Compare Elements of Qua-

ternions, Art. 360.)
This may also be written in the form

S(Ue—~cosa Up)p=+sinaTVUyp, ............ (vir)
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so that the sine of the arc between a point and a focus is propor-
tional to the sine of the perpendicular on a directrix are.

Many interesting examples and illustrations will be found in
the Elements, Book IL, Chap. IIL, Sections 1 and 2, and in
Art. 306, and also in the sixth of the Lectures on Quaternions.

Ex. 1. Through three given points on the surface of a sphere, it is
required to draw a sphero-conic so that a given great circle shall be one of

its cyclic arcs.
[1f , and y; are the vectors to the three given points, it is necessary

Y1
to find ,18 };o that 'SBpSap+p?=0 may be satisfied on replacing p by yi, 72
and v;, « being a given vector. The vector B is given by
BSyryays= — ZVyqys(Say )]

Ex. 2. Find the relations between the cyclic normals of a cone and its

focal lines.
[Identifying (v1.) with the second form of (11.), the required relations are

easily obtained.]
Ex. 3. Prove that
8.V.VafAV8eV. VByVepV . Vy8Vpa=0
represents the cone which has five edges parallel to five given vectors,
o, B, v, & & and show that the form of the equation furnishes a proof
of Pascal’s property of the hexagon inscribed to a conic. (Lectures on
Quaternions, Art. 442.)

CONFOCAL QUADRICS.

ART. 82. Quadrics of the family
Sp(@+a)p=—1, ceoeriiiiiiniiiiiiin (L)

in which z is a variable parameter, are called concyelic, as they
have common planes of circular section (Art. 77).
The reciprocal system of quadrics

Sp(p+a)lp=—1 ciiiiiiiiinns ..(11.)

is called a confocal system.
Because we may write (IL) in the form

Sp(Y+ax+at)p=—(m+mz+m'a*+a%), ......... (1)

it appears that three quadrics (Ir.) pass through an arbitrary
point; and reciprocally, three quadrics (L) touch an arbitrary
plane. Also one quadric (1) passes through an arbitrary point,
and one quadrie (IL) touches an arbitrary plane.

Confocal quadrics cut at right angles. Let «, y and z be the
parameters of the three quadrics which pass through an arbitrary
point (a). Then

0=Sa(¢p+z)la—Sa(p+y) 'a=Sal(p+2)—(p+y) a

— (_¢+y)_(¢+m) () — -1 -1
=Sa. Gt 1Y) a=(y—x)Sa(p+2) " p+y) e
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for all functions ¢+, (p+x)-L, ete, have the same axes, and
are therefore commutative (Art. 66, Ex. 2, p. 95). Thus at any
point of the intersection of the quadrics x and y,

Sp(p+x) Hp+y) 1p=0; covrrvniiiniinnn (v.)

which expresses that the normals (Art. 73, p. 108) (¢+x)1p
and (¢ +y) 1p are at right angles.

2
Ex. 1. Reduce Sp. _ Prubtv oo sum of the form
MICEEICEICEDR
ASp(p+2)7'p+BSp(d+y)~ p+ CSp(p+2)~"p.
[We may employ the method of partial fractions, and treat ¢ as a scalar,
it being commutative with scalars and with ¢ +«, ete.]

Ex. 2. If », y and z are the parameters of the confocals through the
extremity of the vector p, the expressions

Sp.(d+a) Hp+y)%p, Sp(¢+2)(d+y) b+ Sp(d+a)" b+ 7"ps
are respectively equal to

:lexT(d) +y)1p? zero, and Z_%T(d)+z)‘1p2.

Ex. 3. Prove that
Vg Ulb+y)tp, Vo7 U+ ip

are the principal axes of the central section of the quadric # made by the
plane parallel to the tangent plane at p.

Ex. 4. Find the centres of curvature at a point on the quadric x, and
prove that they are the poles of the tangent plane to & with respect to the
confocals y and .

[If v is the vector to a centre of curvature, two consecutive normals
intersect at its extremity, or y=p+¢(¢p+2)"1p is stationary when p and ¢
vary, Therefore

[1+(p+2)"1dp+(b+2) 7 pdt=0, or (¢-+2+0)dp+pde=0,
or dp+(p+o+2)1pdt=0.

Operate with S(¢+x)"1p, and Sp(d+x)d+2+1)"1p=0, and on
comparison with (1v.) the roots of this quadratic in ¢ are seen to be y —x and
z—a. Therefore y={¢+y)d+x)p, v'=(p+2)(¢+x)!p are the vectors to
the two centres. Observe that dp is also tangential to the quadric z
Compare Art. 87, Ex. 1, p. 136, for the method employed.]

Ex. 5. If », y and 2 are the parameters of the three confocals through
the extremity of the vector p, prove that
otyte=-—m"'—p?; yrter+xy=m'+Spxp; xyz=—m—Spyp.

Ex. 6. Prove that the plane SAp+1=0 touches a confocal at the
extremity of the vector
p=A"1(VAPA-1);

and show that the locus of points of contact for a system of parallel planes
is a rectangular hyperbola. :
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Ex. 7. Prove that the locus of points of contact of planes through a line
is a twisted cubic.

[Put for A in the last example (A+#u)(1+2)~' and verify that an
arbitrary plane meets the curve in three points.]

Ex. 8. The locus of the poles of a plane with respect to a system of
confocals is a right line.

Ex. 9. The locus of the poles of planes through a given line is a hyper-
bolic paraboloid.

[p=(¢+u)(A+tu)(1+12) is the locus of a line dividing two given lines
similarly.

Ex. 10. The plane SpApA=0
is the locus of poles of planes perpendicular to A.

Arr. 83. In many investigations relating to the confocals through a
given point, the extremity of the vector a, it is convenient to employ the

vectors
A=(p+a)yla, p=(d+y) e, v=(¢d+2)10, ccrrrreeerrni )

which when originating at the centre terminate at the reciprocals of the
three tangent planes. These vectors are of course normal to the three
confocals. We have then

a=(p+2)A=(p+y)p=(p+2z)v, SAa=Spa=8va=—-1; ........ (11.)
and because these equations give
~1=Su($+)A=SA($+p)p or (v-7)Shu=0,

it follows that
Spur=SrA=8Ap=0, .....cioiiiiiiiiniiiinns (L)

or confocals cut at right angles.
We also have from the same equations

A=p+(y—2)(p+x) Ty, ete, civrieiiiinnaenn. (1v.)
so that w24y~ 2)Sp(p+2)y u=0, (y—2)Sv(dp+x)u=0,
or (=) t=-SUn(p+2) ' Un=+SUA¢+7)'UA, etc,
S +a)1r=0, ete. wrvrriariireeiiiiiiieniiiiaaene v.)

And the axes of the section of the quadric x parallel to the tangent plane
are Nz—y.Up, Nz—z.Uy; and those of the section of the quadric y

parallel to its tangent plane are ~y —x. U Wy—2.Uv.
Introducing a new self-conjugate function 6 defined by the equation

Op=cpp+aS0ap, ..ccovvrriiiirriianieirincennnn, (vr.)
we may replace equations (1) by
B+ ) A=+ p=(0+2)v=0, coeceerrrirrainiranns (viL.)

so that A, p and v are the axes and #, y and z the roots of this function.
If Swp=—1 is the equation of any plane through the point a, and if @
is the pole of the plane with respect to any confocal u,

T=(p+tu)o, or T—a=(0+1)0, ceeereriirriennirees (viiL.)

because —oa=+aSaw. If the plane touckes the quadric w, the pole lies in
the plane, and the vector @ —o (joining two points in the plane) is normal
to w. Thus in order to determine the point of contact of the plane
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Swp= -1 and the parameter of the touched quadric, it is only necessary
to operate on @ by the function 6 and to resolve fuw along and at right
angles to w ; for g

fo=0Vo 0o+ wSo llo=0T~a—u0; T=0+0Ve 10w, v=—-Su100. (IX.)

The vector & being still supposed to terminate in the plane, the vector
@ —a(=T) is tangential to the surface » and perpendicular to . Hence as
@ varies subject to the condition S@w=Saw= —1, we find by (viiL) that

S(@-a)(0+uw) "N (B —a)=0, or ST(O+u)y'r=0 ...l )

is the equation of the tangent cone from a to the confocal u, referred in the
first case to the centre of the quadrics and in the second to the extremity
of a. The form of the equations shows that the tangent cones drawn from
a point are confocal. They intersect in pairs along any line through the
point, for (x.) may be replaced by

ST(Yg+uXy ) T=0, wieiireiiimnniieiad (x1.)
and may be regarded as a quadratic determining the quadrics touched by a
given line (Ur=const.); and they intersect at right angles by the general
property of confocals.

‘We can thus determine the two quadrics touched by an arbitrary line.

Ex. 1. Prove that
(Vg +uXy +Fudp=(F+ux+u?)p+Va(dp+u)Vap.
Ex. 2. A right line defined by the vectors ¢ and 7 of Art. 36, Ex. 4,
touches the confocals whose parameters are the roots of the equation,
Sty +ux+uH)T—So (¢ +u)o=0.

Ex. 3. The lines through a given point touching confocals with a given
sum of parameters, generate the reciprocal of the tangent cone to a fixed
confocal.

[The cone of the lines is St( —m” —a?—)7=0, if » is the sum of the
parameters. |

Ex. 4. If v and v are the vectors to the reciprocals of the tangent planes
of the confocals » and »’ at the points A and B, and if 7 is the vector an,

Sr(v+1)=(u —u)Sp/.
[Here r=(¢p+u)v —(dp+u)v. This is Gilbert’s theorem.]

Ex. 5. If the points 4 and B are both points of contact of the line with

the quadrics,
Sv'=0, Svpr/'+1=0.

Arr. 84. There is a third general method which is often useful for
dealing with the properties of confocals. Writing the equations of the three
confocals through a point in the forms :

T(p+ap=1, T(p+nip=1 T(d+2)2p=1, rrrrerrrr. ()
we are led to assume
p=M{(P+2)(P+y)(P+2)€nniiriininianiiaiinniann, (11.)
as an expression for the vector to the point of intersection. The square roots
(¢+x);~’, ete., are commutative, and, accordingly, on substitution in
Sp(p+2)lp=-1,
we find —1=S8e(dp+y)(p+2)e=Seple+(y+2)Sede+ yze. ............ (111.)
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This is identically satisfied, for the confocal & as well as for the confocals
y and z, if

=0, Sehe=0, SepPe= —1;..cccccirmriiiriiiianaanns (v.)
or what is equivalent, if
=0, Sexe=0, Sefre= —1; ieirriireriieiiricniinnns (v.)

that is, if € is the vector to a point of intersection of three known surfaces,
one of which is of course imaginary. Therefore (11.) coupled with the con-
ditions (1v.) or (v.) is the vector to a point of intersection of the three
confocals ; and allowing any two of the parameters, ¥ and 2, in (IL) to vary,
the vector equation represents the surface z; if only one parameter (z)
varies, the equation represents the curve of intersection of the confocals
y and z.

g Again, we may differentiate p, regarded as a function of #, y and ¢, as
given by equation (11.) just as if ¢ were a scalar, and we have

dz d; dz .
dp=é <m+¢_z’:y 4)—_*_2)[) 3 etesaseeieccssansesanens (VI.)

and the method easily lends itself to the treatment of lines traced on a
quadric surface.

Ex. 1. Prove that the vectors (¢ +2) 1p, (+5)lp, (¢ +2)~Lp are mutually
rectangular, and that the squares of their tensors are
(con)@=p) (2=y)y=2) (y=2)(-2)
m(z) m(y) m@@)
where m(x)=m+m'z+m"2?+2% and where z, y and z are the parameters of
the confocals through the extremity of p.

[Using (11.), we have Sp(¢+y) (P +2)p=Se(p+x)e=0. Also

Sp(b+2)p=Se(p+2) (+)(P+2)e.
This is reduced by replacing ¥ by z+y—a, ete.,, to Se(¢+x)~le multiplied

by a factor. On inversion of (p-+2)7! the rest follows.]
Ex. 2. Find Tp? in terms of #, ¥ and 2.
[z+y+z4+m"=Tp"]
Ex. 3. Express the vector e in terms of the roots and axes of ¢.

Ex. 4. Prove that

1

Ex. 5. Prove that p=(¢+u)(¢+x)_é(¢ +y)§(¢>+z)'be is the equation of
a tangent to the curve of intersection of the quadrics y and z; u being alone
variable.

[Use (v1.).]

Ex. 6. Prove that p=(¢ +x)_’}(¢+ g/)%(¢+z)’1’e is the equation of the
surface of centres of the quadric z—-the locus of the principal centres of
curvature—when y and z vary. (See Art. 82, Ex. 4.)

Ex. 7. Find the lengths of the principal radii of curvature in terms of
%, y and z.

Ex. 8. The imaginary right line, ¢ variable,
p=($+1)(p+n)be

is an umbilical generator of the quadric .



126 CONFOCAL QUADRICS. [cHAP. IX.

[Tt is evidently a generator of the quadric, and parallel to a line to a

circular point at infinity for T(¢>+x)%e=0. That is, it is one of the eight
generators through the four points in which the imaginary circle at infinity
cuts the quadric. But the tangent plane at an umbilic cuts the surface in a
point circle—or a pair of these imaginary generators. See Art. 67, Ex. 1, p. 96.]

Ex. 9. Find the locus of a point through which two of the three inter-
secting confocals coincide. Show that it 1s a developable surface generated
by the tangent lines to the curve

3
p=(p+2)*e

[This is the locus of the umbilical generators of the system, or the circum-
seribing developable.]

Ex. 10. The focal conics are double curves on this developable.
[Put ¢ equal —g,, —g, or —g, in the equation of Ex. 8, and we get a plane
curve in one of the principal planes. For t= —g, we have

Sp(p-g)p=8e(d—g ) (p+a)e= -1, Sip=0.

The conic is double on the developable because a double sign is lost owing
to the destruction of the component of the vector normal to the plane.]

Ex. 11. If « is a constant vector, and z, y variable scalars, the equation
p=(¢"+ad+y)ta
represents a quadric surface, ¢ being a self-conjugate function.

[Assume the equation of the quadric to be Sp(ad?+bp+c)p+1=0, and
determine the constants @, b and c.]

Ex.12. Prove that the imaginary vector ¢ of equation (1v.) satisfies the
relation &/ —1.e=Vee.

EXAMPLES TO CHAPTER IX.

Ex. 1. Three right lines through a common point are mutually at right
angles. If the first and second move in the planes SAp=0 and Spp=0
respectively, the third describes the cone

SVApVup=0.
Ex. 2. The cone
SoiSajSak | SBISRISBE | SyiSyiSyk
RSN + + =0
Sap SBp Syp

contains the six unit vectors ¢, j, £ and o, (3, v, the vectors of each set being
mutually perpendicular.

Ex. 3. If the cone Spdpp=0 has three mutually rectangular edges, the
condition m”=0 must be satisfied ; if it touches three mutually rectangular
planes, m'=0,

Ex. 4. The four cones of revolution which touch the planes

SAp=0, Spp=0, Syp=0
are represented by T.Vp1VpZ + VurTASAuy)1=1;
and the cones of revolution through the three lines
VAp=0, Vup=0, Vvp=0
are represented by  T.p 18p2+ VusTA(SApv) =1,
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Ex. 5. Three points fixed on a line move in given planes. Find the
locus of a fourth point fixed on the line, and show that it is represented by
an equation of the form

T(aVurSAp+bVvASup+cVAuSvp)=1.
Ex. 6. Interpret the equation
TR IVBp=¢TA'SAp
as determining the locus of a point moving in accordance with a certain law
in relation to a given line and a given plane.

Ex. 7. The polar planes of points situated on certain fixed lines cut a
quadric in circles.

Ex. 8. Find the locus of the centre of a sphere which rolls along two
straight wires.

Ex. 9. Determine the locus of the vertex of a right cone standing on a
given ellipse of which a and 3 are the principal vector radii.

Ex. 10. A plane cuts a constant volume from a pyramid having its
vertex at the centre of a quadric. Find the locus of the pole of the plane
with respect to the quadric.

Ex. 11. Find a tangent plane to a quadric which along with three
mutually conjugate planes passing through the centre forms a tetrahedron
of minimum volume.

Ex. 12. Find the locus of the point of intersection of three mutually
perpendicular planes each of which touches one of three given confocal
quadrics.

Ex. 13. TFind the locus of the foot of the central perpendicular on a
plane through the extremities of three mutually conjugate radii of a quadric.

Ex. 14. Find the locus of intersection of tangent planes at the ex-
tremities of three mutually conjugate radii of a quadric.

Ex. 15. Find the locus of a point whence three mutually perpendicular
tangent lines can be drawn' to a quadric.

Ex. 16. Find the locus of a point whence three tangent lines can be
drawn to a quadric so as to be parallel to three mutually conjugate radii.

Ex. 17. Show that the equation
2p _p_ ¢ _,

Sodp 2 (pP
determines the directions of the radii of the quadric Sp¢p+1=0 which are
most or least inclined to the corresponding normals. Solve this equation.

Ex. 18. Through the extremity of the vector o mutually perpendicular
lines are drawn to cut a quadric. Prove that
w111
1+Sada 22y " 9ys 212
where @, and 2, are the intercepts on one of the lines.
Ex. 19. From a point on the quadric Sppp+1=0, the extremity of
the vector a, mutually rectangular lines are drawn to terminate on the

surface. The plane through their extremities passes through the extremity
of the vector 2da
S
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Ex. 20. Find the volume of the frustum of the cone whose vertex is at
the centre of the quadric Sppp+1=0 and whose base is the intersection of
the quadric with the plane SAp+1=0.

Ex. 2l. If UVg is a fixed vector 7, eliminate the scalar ¢ and the
variable part of ¢ from the relation
p=q(B+ta)g™
and discuss the locus represented by

Tp=1(B+a SY(S%%B)>

Ex. 22. The vectors a, 8 and y being unit and mutually rectangular,
show that the condition that

Tha+ToB+Tey
should be a maximum or minimum is
Vadg'Upa+ VS UpS+Vyd' Upy=0
where ¢ is an arbitrary vector function, and prove that this is equivalent to
Tpa=TB=Teys

(«) Hence derive a theorem concerning the conjugate radii of an ellipsoid.

Ex. 23. Through a variable point ¢ on a fixed line V(p— 8)a=0, a plane
is drawn perpendicular to a fixed line (y). Find the locus of points P in the
variable plane for which Tor=¢Trq where ¢ is a given scalar.

Ex 24. Show that the section of the cone Spdp=0 by the plane
SAp+1=0 is equal to the section of the quadric Sp¢pSA¢A+1=0 by the
plane SAp=0.

Ex. 25. Find the equation of the surface which is generated by trans-
versals of the lines V(p—8)a=0, V(p—3)a'=0 and of the ellipse

p=vy+7y cost+vy’sint

Ex. 26. The envelope of the planes of intersection of the sphere
98\p~t=1 with a variable sphere passing through the origin and having
its centre on the quadric Spgp+1=0 is the cone

(8Ap)2+8ppTTp=0.

Ex. 27. From the extremity of the vector 8 which terminates on the
quadric Sppp+1=0, a right line is drawn to intersect the vector radius a,
one of three mutually conjugate radii a, 3, ¥, and to be parallel to the plane
containing the other two. It meets the ellipsoid again at the extremity of
the vector — 8- 2aS3¢pa ; and the plane SAp+1=0 which passes through the
three points thus determined by the three radii is given by

[ Pa , PB &
A= <ss¢a+sa¢/3+sagy>'

Ex. 28. Show that
_ T A+ +0)
P= T SIXFIN) G I(A+2N)
is the locus of the centres of sections of the quadric Spdp+1=0 made by
planes through the intersection of the planes SAp+1=0, SA’p+1=0; and
discuss the nature of the curve.
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Ex. 29. Show that the surface represented by the equation
SIASNp+1) = X (Srp+ 1)][(Spp+1) - ' (Spp+1)]=0
may be generated by the intersection of two perpendicular planes each of
which contains a fixed line.
Ex. 30. Prove that the foci of central sections of the quadric Sppp+1=0
generate the surface
P Vpdpl | »_g

Spdp SVppVpdp £

Ex. 31. The envelope of a sphere which passes through the centre of a
quadric and which cuts it in a pair of circles is a quartic surface touching
the quadric along a sphero-conic.

PBx. 32. Quadrics similar to Spfp+1=0 are described on a system of
parallel chords of Sppp+1=0 as diameters. Prove that the envelope of
these quadrics is also a quadric, and find its equation.

Ex. 33. Prove that Sp.i— SaEp,,+gg' -0
where p, is the vector to the foot of a normal from the extremity of the

vector o to the surface Spp+1=0 and where m’ and m are the second and
third invariants of the function ¢.

Ex. 34. If a right line cuts a quadric at the angles § and &, show that
sin §_sin @

7

p p
where p and p’ are the central perpendiculars on the tangent planes at the
points of intersection.

Ex. 35. If n is the length of the chord which is normal to a quadric at
the extremity of p,

% =m"p —(m' —mTp?). p%

Ex. 36. Pairs of mutually rectangular tangent planes are drawn through
the extremity of the vector a to the quadric surface Sp¢p+1=0; prove
that the locus of their intersection is

a=p g1 P, _opg L g 1
1+SVa.p ¢ Vap (o:—p) SVap¢ "Vop'
and show that this equation may be reduced to
m(Vap)?+S(a—p)¥(a—p)=m'(a~p)

Ex. 37. The sum of the products of the perpendiculars from the two
extremities of three mutually conjugate diameters on any tangent plane to
a quadric is twice the square of the central perpendicular on the tangent
plane.

Ex. 38. In terms of the vectors T=p,—p,, o= Vpp, show that the
equation Soyrr=0 .
represents the chords of the quadric Spdp+1=0 which enjoy the property
that the normals at their extremities intersect.

Ex. 39. The locus of the centres of chords at whose extremities the
normals intersect and which are parallel to a fixed direction 7 is the right
line Spér=0, Spryr=0.

1.Q. I
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Ex. 40. Prove that the squared radii of the circular sections of the
quadric gp?+2SApSup+1=0 which pass through the extremity of the
vector a are

g+ A (Sha)gg’g™ and g7l +p H(SpaYy'y'y™?
where g, ¢ and g” are the latent roots of the linear function determining the
quadric. Interpret these results.

Ex. 41. Determine the spheres cut in diametral planes by a quadric.

Ex. 42. If planes through an edge (o) of the cone Spdpp=0 and through
the vectors a and 3 respectively meet the cone again in edges coplanar with
the vector v, show that

S(pSagpe — 2aSpa)(pSBHA - 26p48)y =0,
and reduce this by the aid of the equation of the cone to

SppaSBey +SppLSyda—SpdySapB=0.

Ex 43. Using the notation of Art. 38, p. 42, show that if a translation
represented by the vector w will carry the tetrahedron aBcp so that it
becomes inscribed to the quadric Sp¢hp+1=0, we shall have

0o=3"¢ZASada ; STASadad I ZASada+ 40ZlSapa+ 49 =0.

Ex. 44, It is required to place a pair of tetrahedra ABcp and A’B'c'D’ s0
that their vertices may be corresponding points on a pair of confocal
quadrics. (Robert Russell.)

(@) A quaternion statement of this problem is to determine a self-
conjugate function P, a scalar , a quaternion ¢ and a pair of vectors « and
«’ 80 that the conditions

- ~1
i3 %(p —)=(P+u) Hgp'q~ - K)=a unit vector
may be satisfied when p and p’ terminate at corresponding vertices of the
tetrahedra in their initial positions.
() If ¢ is the linear vector function defined by the relations

Pla-8=a'—-8, (B-H=F-8, $(y-8=y -9,
we find that uPp-1=¢'¢p—1, and ¢( )q”1=(¢>’¢.)_’1"¢’.
(c) Also in the notation of Art. 38, « and « are given by
. (Pp'p—1)k=—ZASa(Pp'Pp—1)a, v(u+Sk(Pp'Pp—1)x)+ ZlSa(Pp'¢p —~1)a=0.

Ex. 45. A plane mirror (normal v) is moved so as to reflect the light
from a star in a fixed direction (). Show that if y is the unit vector
towards the celestial pole, o the unit vector towards the star at the time
t=0, the vector v must describe the cone represented by

2t 2
v||[(y Tay*+8) or v8y(c+8)=28vySud.
(a) Show that the vector
eoeoxow et
Y TAYTy oYy TAY
is indegendent of ¢ provided the vector A satisfied a certain condition of
perpendicularity, and interpret.



CHAPTER X.
GEOMETRY OF CURVES AND SURFACES.

(i) Metrical Properties of Curves.

Artr 85. Supposing that from each point of a curve a vector
n is drawn, variable with the position of the point, let us
consider the rate of rotation requisite to produce the change of
direction of the vectors 5 as we pass along the curve. In the
figure P and P’ are any two points on the curve, and the vector
PH=Uy is a unit vector along the emanant vector 5 drawn
from P, while PH'=Uy is a unit vector along the emanant »
drawn from P. The vector PH” is drawn equal to P'H".

o
S - ’ Gﬂ,
P
/ _~H"
‘ PP
V4 ,—7’, ‘\
I/ -7 U"7 \‘
Pez®” :
-~ Uy H
F16. 27.
In the limit the quaternion
Uy'—=Uy _ HH’ @
U?]']-‘(pl . p) - PH ] TPP, ........................ .

is a vector perpendicular to s and to 5" so that rotation round
it from # to " is positive, the angle of the quaternion (the
exterior angle at H) being ultimately equal to a right angle.
The tensor of this vector is ultimately equal to the ratio of the
circular measure of the angle HPH" (the angle between # and )
to the arc of the curve, and thus the vector represents in
magnitude and direction the rate of rotation in question. In
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terms of the differential of Uy and the corresponding differential
of p(=OP), the vector of rotation is

= QUn _ydn 1 Vady
Uyldp  n Tdp TH*Tdp’
the second form of the expression for the vector being deduced

from (1v.), Art. 53, p. 68, and the third form resulting from the
consideration that :

VaB-1=VaB.B8-2=—VaB.TB-2=+VBa. TR

If, in particular, we replace the vector 5 by dp, a vector
tangential to the curve, we have for the vector of rotation of
the tangent, or the vector curvature at P,

dUdp d% 1 _Vdpd?
T,T_Vd.p'm_—_po;‘ ) eereeieenianas (111.)

for in accordance with the foregoing this vector represents in
magnitude and direction the rate of bending of the curve at the
point P, the bending taking place in the plane through P at right
angles to this vector.*

In the case of a plane curve this vector curvature is always
parallel to a fixed direction—that of the perpendicular to the
plane, but in the general case the direction of the vector is
continually changing. The plane through P to which it is
perpendicular, or the plane of the bending at P, is the osculating
plane of the curve at P.

To investigate the rate of rotation of the osculating plane as
we pass along the curve, or, what is equivalent, the rate of
rotation of the normal UVdpd? to that plane (compare the
third form of (111.)), we have by (IL),

dUVdpd?p Vdpd®p 1 _ d®p
UVdpd®p.Tdp™ ' " VdpdZp Td, =~ V%S Va0 (1)
since dVdpd?p=Vdpdsp. This is the vector torsion of the curve
at P. It gives in magnitude and direction the rate of rotation
of the osculating plane, and we see (what is geometrically
obvious) that the osculating plane rotates about the tangent
line (Udp).

# The phrases vector curvature and vector torsion correspond to Hamilton’s vector
of curvature and vector of second curvature. We shall see what advantage results
from considering an angular velocity to be a vector on the plan of this article,
and the present case is quite analogous. It is easier in Quaternions to represent
the primary characteristics of a curve, the curvature and the torsion, by vectors
than to represent the somewhat artificial and indirect conception of an osculating
circle or radius of torsion. The theory of emanant lines has been worked out by
Hamilton (Elements of Quaternions, Art. 396).
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The vector curvature and the vector torsion may be com-
pounded into a single rate of rotation

dpdZp

Tdp? +Udp.S Vdpd%' werereeemeeee (V)
which may perhaps be called the vector twist of the curve. This
rotation produces the same effect on the tangent line and on the
osculating plane as the vector curvature and the vector torsion
respectively, for the former vector is at right angles to the
osculating plane and the latter is parallel to the tangent line,
and we do not here consider the rotation of the osculating plane
in its plane or the rotation of the tangent line round itself.

If the equation of the curve is given in the form considered in
Art. 48, that is if p is given as a function of a parameter ¢, the
expression (v.) may be written in the form

V 7 M 17
w= Tf; e +UpS s
where p’, p” and p” are the successive deriveds of p with respect
to the parameter.

If the arc of the curve is taken as the independent variable,
and if p;, p, ps ete, denote the suecessive deriveds of p with
respect to the arc, the relations (compare Art. 48, p. 63)

Tp1= 1, Sp1p2=0, Sp1p3+p22=0, ete., cvrverenns (viL)
found by equating to zero the successive deriveds of Tp,, serve
to simplify the various formulae. Thus (v.) becomes

w=p.po+pS L8 (vIIL)

P1P2'

Ex. 1. Show how to connect the deriveds of p taken with respect to ¢
and with respect to s.

. ds ds\? dzs
P=Pgp P =P\ gy +P1d—22’ etc.

Ex. 2. Show that the tangent line and the osculating plane of any curve
may be written respectively in the forms,

T=p+ap, T=p+zp'+yp’
z and y being variable scalars.

3
w=V dp

Ex. 3. The tangent line and osculating plane of the twisted cubic

T=($+0)
may be expressed by

T=(¢p+a)(+1) %, T=(d+2)(P+y)(p+H)a,
respectively, « being a constant vector and ¢ a given linear vector function.
Ex. 4. Calculate the vector o for the helix
W =q(scos t+j sin £) + kbt,
7,7 and £ being mutually rectangular unit vectors.
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Ex. 5. Find the centre of the osculating circle of a curve.

[The vector to the centre from the point on the curve has the same
direction as Vp'p"Tp'~%. Up/, and its tensor is the reciprocal of that of this
vector. ]

ART. 86. The important relations (1r.) and (1v.) of the last
article enable us to reduce every affection of the curve to a
function of the unit vectors

a=Udp, y=UVdpdZp, B=UVdpd®pUdp, .......... (1)

of the scalars
CTVdpdZp o
c1 = ——T—a;a— . a,l = S V_d/)d‘—zp’ ..................

and of the deriveds of these scalars with respect to the arc.

We notice first that a, 8 and y form a mutually rectangular
unit system so that aB=v, By=a, ya=B. The scalars a, and
¢, are the ordinary scalar torsion and curvature respectively,
and partly for the sake of symmetry we regard them as the
derived da dc '

eriveds =, +
angle through which the osculating plane has turned about the
tangent line in passing from some initial point P, on the curve
to the point P. In like manner ¢ is the total or integrated angle
through which the tangent line has turned in the osculating
plane from P, to P. The vector a is along the tangent, 8 along
the principal normal and y along the binormal to the curve.

Denoting still deriveds with respect to the arc s by suffixes,
" the fundamental formulae, (11.) and (1v.) of the last article, give
in accordance with (1.) and (11.) of the present, the simple relations

of two angles a and ¢. The angle a is the total

& "1 Bi_,

d=cy, “=aja, F= Y OIIOR IIL

a_aY y a;a B ot oy=w (uL)
or a=c8 Bi=0y—€a, Y=—0a orreeenen. (v.)
or simply M= V0N i )

if # stands for a, 8 or .

The formulae in a and v are translations of the formulae of
the last article. The formula in 8 is derived from these by aid
of the relation 8=vya.

To express the successive deriveds, with respect to the arc, of
the vector to any point on the curve in terms of a, 8, y and of the
scalars a,, ¢; and the deriveds a,, c,, ete., of these scalars, we have

PL=a,

pa=a,=3¢;, (VL)
p3=ay= B3¢, + Bey= Bey+(ya, —ac)ey, '
pa=Bes+2(ya; — ac,) e, +(ya, — acy)e; — B(a2+ )¢ ;
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and in general we shall find the n™ derived to be of the form

pn=aAn+ BB+ yCn ciiiiiinininnn, (VL)

where 4,, B, and C, are certain scalars (not the n deriveds of
scalars A4, B, ¢, however). We may remark that the deriveds
of highest order of ¢, and @, oceur in p, in the term Be,+yan-,¢,
as we see from (VL)

Thus, as we have asserted, every affection of the curve may be
expressed in terms of a, B, y of ¢, and ¢;, and of the deriveds of
these scalars. (See Appendix. KElements, Vol. ii.)

ART. 87. The developables connected with the curve may all
be investigated in one common way.

The vector 4 and the scalar ¢ being in some way variable with
a point on a curve, a plane of any developable connected with
the curve is expressible by an equation of the form

S(Zﬁ—p)n=e, .............................. (I)
@ being the variable vector to a point in the plane, and p being
the vector to the point P on the curve to which the plane corre-
sponds. The equation of a successive plane is of the form

S(w-—p)q—e+ds.%(S(w—p)q—e)=0, eeeeennnedIL)

¢, n and p being regarded as functions of the are s, but @ being
independent of s. Thus two successive planes intersect in the
line of intersection of the first plane and of the plane determined
by equating to zero its derived with respect to s. The inter-
section of the plane (L) and its consecutive is accordingly the
line common to (1.) and to the plane

S(@—p)np = San4ey, coovrviniiniiiiinn (11L)

n, and e, being the first deriveds of 5 and e.
This line of the developable is also given by the vector
equation (Art. 35 (L), p. 89),

p+in16—n(San+el)+t’

U=
V’?’h

where ¢ is a variable parameter.
In the same way, equating to zero the second derived of (1.)
with respect to s,

S(E’—p)n2= 2San, +SB7. ¢, + ¢, ceerreenenneenesa(V2)

and combining this with (11L) and (1.), we have the point of
intersection of three successive planes of the developable,

Ve + Vngn(San+¢,)+ Vi (2San, +8B8n . ¢, +¢5) (VL)
Sy, ’ ‘

To=p+
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This point is on the cuspidal edge of the developable, and it
corresponds to the point P on the curve. More generally if in
(vi) we allow the arc to vary, we have the equation of the
cuspidal edge of the developable.

In particular, the polar developable corresponds to n=a, ¢=0;
while y=0, ¢=0 gives the rectifying developable; and n=",
e=0 is the tangent line developable. 1t is shorter in many cases
to treat the developables ab initio rather than to substitute in
the general formulae (1v.) and (V1.).

Ex. 1. The vectors from a point on the curve to the centres of the
osculating circle and sphere are respectively
B By,4 1
o and cl+yda' ey
[These expressions follow from consideration of the polar developable.
Or the first is geometrically obvious, and it is also evident that the centre

of spherical curvature lies on the polar line, @= p+§+x“y, which is by
1

geometry the locus of points equidistant from three consecutive points on

the curve. To determine x we may express that @ is the vector to a point

which is momentarily stationary as we pass along the curve. Thus

4@ ya, —ae; d<1> Sz ) 1 d(l)

4 =0=a+! ——cl—f+,3d8 o ~#fay+4..y, and therefore 7= a\e)
We must remember that x is not here a function of 5. 8z is some small

scalar. See the next example.]

Ex. 2. For a spherical curve

1 d2(1>_
ataals,/ ="

[In this case we can determine x so that the vector in the last example
terminates at a fixed point in the centre of the sphere containing the curve,
and now 8z : ds is the derived of x with respect to s, so that

-t aal))

The method here employed is often useful. The condition may also be
found by expressing that the vector to the centre of spherical curvature
terminates at a fixed point. The condition is momentarily true (not an
identity) if five consecutive points lie on a sphere.]

Ex. 3. Prove that the rectifying line is V(@ —p)o=0, and that the
cuspidal edge of the rectifying developable is T=p -Z)— : % Zﬁ .
1 1
[The rectifying plane 8(@ —p)8=0 through the tangent line and at right
angles to the osculating plane, generates this developable.]

Ex. 4. The curve is a geodesic on the rectifying developable.
[Prove that the angles of the quaternions
(w+dw):a and (0+de):(a+da)
are equal to the second order of small quantities, and hence show that
when the developable is flattened out the curve becomes a right line, so
that it is a line of shortest distance (or a geodesic) on the developable.]
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Ex. 5. If the ratio of curvature (scalar) to torsion is constant, the curve
is a geodesic on a cylinder.

[If Tw.cos H=a,, Twsin H=c¢,, the angle H is here constant, and
equations (111.), Art. 86, give d(a cos H+ v sin H)=0,or on integration Un=£,
a constant vector. The rectifying developable is therefore a cylinder.]

Fx. 6. Show how to determine the curves for which the ratio of
curvature to torsion is constant.

[By the last example we have o;=vyasin H.To=Vka.To. If df=To. ds,
we have, on changing the variable from s to f, «'=Vke, and on
differentiating,

o' =Vka'=kVka=—a—-kSka= —a+kcos H;

or & (a—tkcos H)+ (a—keos H)=0.

The integral of this equation is a—kcos H=Acos¢+pusint, and as we
must have Ska= —cos H and Ta=1, it appears that A and p must be
perpendicular to one another and to #, and that their tensors must be equal
to sin 4. Thus
a=Fkcos H+sin H({cost+jsint),

and on integrating again

Z3=Iads=p0+/cs cos H+sin H. I(i cos ¢+ jsin £)ds,
where p, is a vector constant of integration.]

Ex. 7. Find the conditions that the unit vectors (a, B, ) of one curve
may remain constantly inclined to those (a, 8, ¥') at corresponding points
of another.

[We must have wds=wds, or ada+ydc=a'de’+y'd¢. Hence either
B || B or else da:de=-8yfS': Saﬁ?’:const. In the second case both curves
are geodesics on cylinders. In the first, if «’ makes the angle u with q,
v' makes the same angle with y (the four vectors being coplanar), and
H=u+H'. In other words,

da=cosu.da’ —sinu.d¢, de=sinu.da’'+cosu.dc]

Ex. 8. Find the unit vectors for the locus of centres of spherical
curvature, and show that they remain constantly inclined to those of the
given curve.

Ex. 9. The vectors p and p’ are drawn from a centre of reciprocation to
a point on a curve anc{) to the corresponding point on the cuspidal edge of
the developable into which the curve reciprocates, prove that

PySyp=py'Sy's' =K%
where K is the radius of reciprocation and where y and y’ are unit vectors

normal to the osculating planes at p and p'.
(@) Compare the curvatures and torsions of the two curves.

Ex. 10. Compare the unit vectors for a curve and its inverse.

(i1) Ruled Surfaces.

ART. 88. Having showed in the last article how to determine
the surfaces generated by planes connected with the curve, we
shall now consider the surfaces generated by the emanant line
(compare Art. 85, p 131)

V(ZU——p)n=0. ............................. (I)
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Reverting to p. 40, Art. 36 (v.), the shortest vector QQ" from
the line to any other line V(& — ')y’ =0is
VoL P _ (o' =p)
QQ'=Vyy'S Vor* and 0Q=p+#S Vor ...(IL)
Putting in these p’=p+dp, 5’'=5+dy and proceeding to the
limit having divided Q'Q by T (p"—p), we find
QY _ Udp _ Udp_dU)] Uden B
E—V)}dﬂs m-—ts L —W S dUrI —Pl, ....(III.)
by Art. 85 (1L); and neglecting a vanishing term in the
expression for 0Q,

- dpn _ dp _ Udp
OQ—p+nSm—p—UnSdUn—p—UryS Uy (IV.)

the various transformations being easy consequences of the
formula just cited, and p being a scalar defined by

Udp dp (v
) —SVdm]‘l_ dTy - e (v)

The vector p: represents the rate of translation of the emanant
line as it passes through successive positions, this vector being
the ratio of the shortest distance between consecutive positions
to the arc ds of the curve. In other words, the emanant may

be supposed to pass from one position to a consecutive in virtue
of a rotation (ds about the shortest distance QQ’ coupled with a
translation QQ'=p:ds along that shortest distance. Or again
p is the ratio of the shortest distance to the angle between the
consecutive lines. The quantity p is usually called the para-
meter of distribution of the ruled surface, though the theory of
serews would offer the more suggestive term pitch, because the
transference of the generator from one position to the consecutive
is in the language of the theory of screws effected by a twist
about the screw coaxial with the shortest distance and of pitch p.
The point Q, the extremity of the vector (1v.), is the point of
closest approach of successive generators; and as s varies Q
describes the line of striction of the ruled surface. For a
developable, this coincides with the cuspidal edge, and p
vanishes.

p=8

Ex. 1. Prove that the line of striction and the parameter of distribution
of the surface generated by the principal normals of a curve are

Tt B, G
p+a12+012’ P=optop

Ex. 2. The tangent to the line of striction of this surface is parallel to

wd, d ( ¢ )
a12+012+Bds al+c?)
and the shortest distance between consecutive generators is parallel to w.
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Ex. 3. If n=acos{+Bsinicos m+ysinlsinm,
prove that the condition that the emanant line % should generate a

developable is
sinl.d(a+m)—coslsinmde=0 or sinl{=0.

[By (v.) if p=0, Sandn=0.]

Ex. 4. Prove that no line except a in the plane of a and 8 can generate
a developable ; that the only developables generated by lines in the plane of
o and y are the tangent-line and the rectifying developables ; and that any

line whatever in the fpla.ne of B and y is capable of generating a developable.
[For the plane of « and B, {=0 or m=0, and m=0 is impossible if

varies. For the plane of a and y, I=0or m=2. If m=7§r, we find n=Ue

3
since sinl.da=cosl.de. If I =7§r, we have a series of developables

@=p+t(B cos(a—ap) - y sin(a ~a5))
and their cuspidal edges are

m’=p+/—3— Yt-an(a——ao),
e ¢
a, being an arbitrary constant.]
Ex. 5. Prove that the curves

—p+B_Y -
zD'——p+cl—c—l tan (a — a,) .
are the evolutes of the curve @=p, and that they lie in the polar developable.
Ex. 6. If the emanant is perpendicular to the tangent, prove that

oq=pt_,nacsm o, & o
TP o 2costm £ (@ +my)? P= ¢ 2cos?m+(a, + my)?

where n=f3 cos m+7 sin m.

ART. 89. The normal to the ruled surface

o LY B PP (1)
at any point @ is parallel to
v=Vy(dp+udy), ccoernirinniiiiin (1)
this vector being perpendicular to every tangential vector
do=dp+udy+ydu. .ocooviiiiiii. (11.)

The tangent plane is
S(C)’—p)Vn(dp+udn)=0, .................. (1v.)

and as it generally involves u, it varies from point to point along
the generator. Moreover, since it involves u linearly, the an-
harmonic of four tangent planes is equal to the anharmonic of
the four corresponding normal vectors (iL), or of the four cor-
responding points of contact (1.), (Art. 37, p. 41).

Expressing that the tangent planes at two points « and 4’ on
the same generator are perpendicular, we have a relation

Sw'=0, or SVy(dp+udy)Vy(dp+u'dy)=0, .......(V.)
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which determines an involution between the corresponding points
w and . This may be thrown into the form

(uts z:gs><u'+s z:’?j{;) ——1(v %3—5)2, oo (VL)

because (SAu-1)2—TAu"1)2=—T(Viu~')% Comparing with
equation (1v.) of the last article, it appears that the point Q in
which the generator meets the line of striction is.the centre of
the involution, and that the foci are imaginary. If C and ¢’
are the two points u and «’, it is not difficult to see that this
equation (v1.) is equivalent to

QC. QU =4P% i (viL)

QC and QC’ being vectors, and because their product is positive,
they must be oppositely directed. That the quantity on the
right in (Vi) reduces to Ty %p? follows most easily by taking
the arc as the independent variable, and then
V. Vip(Vony) "t =5Spy(Vomy) =1 = 0T~ 58py (Vi ™)1
=—y"1SUdp..!

by (v.) of the last article.

Bx. 1. If the tangent planes of a ruled surface touch the surface all
along the generators, the surface must be a developable or a cylinder.

[The direction of the normal must be independent of u. This requires
(21327“1,,] that is, dUn =0, or else dp|l 7, or the line is a tangent to the curve

=p.

Ex. 2. If for any point p=0 the tangent plane touches all along the
generator.

[A generator of this kind is said to be forsal. A ruled surface has in
general a definite number of torsal generators.]

Ex. 3. The point @ being on the line of striction, prove that the tangent
of the angle between the tangent planes at q and at any point ¢ on the
same generator is

T
tan A= ﬂ.

Bx. 4. Prove that the vector velocities of the points ¢ and ¢’ are at right
angles, and compare their magnitudes.
The vector velocity of ¢ is t(ec+p). See Art. 88.]

Ex. 5. Prove that the vector to a point on the line of striction of the
quadric Spgp+1=0, and the corresponding parameter of distribution are
respectively .

1,42 1
p:i\/—ﬁv‘f’_", p= \/—ﬁs—‘i}
where Sy¢n=0.

[See Art. 88. To reduce we may take 7 to be a unit yector so that
Sy’ =0, Sy’ =0 as well as Spdy=0.]
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(iii) Curvature of Surfaces.

ART. 90. Projecting a curve on any plane, normal to the fixed
vector k, the curvature of the projection is (Art. 85 (11L.), p. 132)
d.Ud.k'Vkp V.k-'Vkdp.k-'Vkd®p k-'Skdpd®p

d. % VEk Tk Vkdpy  T(Vkdp)®

P P L
dUdp  Tdp? (L)
PR A 77y R :

or the curvature of the projection is the projection of the cur-
vature into the cube of the cosecant of the angle between the
tangent to the curve and, the normal to the plane of projection.

If the plane of projection is parallel to the tangent, the pro-
jection of the curvature is the curvature of the projection.

Resolving the vector curvature of a curve traced on a surface
into its components perpendicular to and along the normal v,
we have

=k-1Sk

dUdp _ _,
dp "’

and since Sydp=0, the first component is, by what we have just

proved, the curvature of the projection of the curve on the

normal plane (Lvdp) to the surface through the tangent line, and

the second is the curvature of the projection on the tangent plane.

Remembering that Svdp=0, and that its derived is also zero,

or Syd?p= —Sdudp, the first component admits of the trans-
formations

v 1V d_gdp= Svd’p Sdvdp

dp pv.Tdp= " dp.v.Tdp (1)

The last of these shows that the component is the same for all
curves traced on the surface, provided they have a common
tangent line dp, dv being a linear function of dp; and thus in
particular it is the curvature of the normal section of the surface
through dp. This is Meusnier’s theorem—the magnitude of the
curvature of the normal section is that of the oblique section
into the cosine of the angle between their planes.

The second component is, as we have already shown, the cur-
vature of the projection of the curve on the tangent plane, or it
is the rate of bending of the curve round the normal (or in the
tangent plane). It vanishes for a geodesic—the straightest curve
on the surface between a pair of points—for such a curve can
have no component of bending in the tangent plane; and it is
called the geodesic curvature of the curve. The differential
equation of a geodesic is therefore

SVddedp=0, or Sudpd2p=0. ................ (lV.)

Vy%+ vISy——F (iL.)
p P

v l(dp)' 1SpdU dp = d
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The normals to the surface along the curve trace out a ruled
surface, and by Art. 88 the equation of the line of striction and
the value of the parameter of distribution are

dpv . dp
oQ=p+ VSVydy’ p=_S Vb oo v.)

The tangent planes along the curve generate a developable.

This and its cuspidal edge are respectively represented by

VuduSdpd
T5=p+uVydv, T=p+ %,y‘és;d%y ............... (VI.)

ART. 91. If fp is any scalar function of p, and if we write
dfp=n8Sudp, dv=¢dp, .coeeeeieiiiiiin. ()
the function ¢ is self-conjugate when n is independent of p or

when it is a function*® of fp.
Let dp and d’p be any two independent differentials of p so that

d'dp=dd’p, ddfp=ddfp. ..cccevvieererrnis (1)
We find on expansion by (1) if dn==Sadp,
d'dfp=nS¢d pdp+nSyd'dp+Sad'pSidp,
dd’fp=nS¢dpd’p+nSvdd’p+SadpSud’p;
and by (11.) these expressions give

Sdp(ngd'p+vSad’p)=Sd'p(n¢dp+ wWadp). .o.eeeen(111)

The function n¢® +vSe@ is therefore self-conjugate; and if n
is constant so that o is zero, or if it is a function of fp so that
o || v, the function ¢ is self-conjugate likewise. We also observe
that if e is the spin-vector of ¢,

Ine+Vie=0 and Sve=0. .....cccevvvrennn. (iv.)

This scalar condition is in fact the condition that Sydp=0
should lead to an integral fp=const.

If the equation of a surface is given in the form fp=const,
the differential vanishes if dp is any tangential vector at the
extremity of the vector p, and the vector v is parallel to the
normal.

ArT. 92. In applying the results of the last article to the
study of surfaces, we shall leave Ty arbitrary, and shall write

=¢,+Ve. The spin-vector ¢ disappears automatically from
Sdpdy=Sdpgpdp=Sdpg,dp, whatever vector dp may be, and it
also disappears from Vudy=Vv(¢,+ Ve)dp, because in this case
Sydp=0 and also Sve=0 by (1v.) of the last article, so that
ViVedp=0. Thus we have

dv=gdp=(py+ Ve)dp, Sdpdv==Sdpgpdp, Viudv=Vuvg,dp. (1)

* This is included in a more general theorem (Art. 60, p. 80).
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Writing C for the magnitude* of the curvature of the normal
section parallel to dp,
_ _Sdpgydp —0-
C= _W’ SVdp—O, ..................... (II.)
and it follows at once by Art. 73, p. 107, that C is the inverse
square of the radius of the conic

Swgm= =Ty, Sum=0, ..c.cceveennn.. (IIL)

which is parallel to dp. It is also evident from (1) that Vudy is
parallel to the radius of this conic conjugate to dp.

Remembering that the function ¢, is independent of dp, al-
though it involves p in its constitution, we may for any point on
the surface regard ¢, as constant, and we may apply the formulae
of Art. 75 to calculate the directions of the principal axes of the
conic (111.). The inverse squares of the principal radii of the
conic are the principal curvatures (C| and C,) of the surface, and
are the roots of the quadratic

Sv(py—CTr)-2v=0, or C?Tv?—CSyxw+ Sy=Ww=0; (1v.)

and unit vectors (1, and ,) along the principal axes are deter-
mined by

Tl ” ((PO_ CITV)_IV} To ” (¢0_‘ C2TV)_1V. ............ (V.)

The three vectors 1, T, and Uy form a mutually rectangular
unit vector system, and we suppose the directions chosen so that
T1T9 = Ul/.

Writing also

Udp =T, €08 I+ Ty sinl, ..ooiiiiiiiiiina, (VI.)
the expression for the curvature (Ir.) of the normal section

reduces to
C=0C cos®l+Cysin?l; oueeeerivninnnnnn.n., (viL)

by (1.) we also have
Vvdy = (7,C, cos | — 1,0, sin 1) TW?Tdp, ...........(VIIL).
since  Vry7ypUdp=787,4,Udp —7,81,¢,Udp
=7,87y¢pgTy81I0 L — 7S prycos L

and the vector OQ to the point of closest approach of consecutive.
normals along dp and the scalar p (Art. 90, (v.)), assume the
forms

2 1?2 _— 1
0Q=p—Ty. C, cos?l+ C,sin?l (C,—~C)sinlcosl

C,2cos?l + C,2sin?l rp= Cr2cos?l + C2sin®l (Ix.)

* It is not hard to see by considering the sense of rotation that if we suppose-
C to be positive for a surface like an ellipsoid, the sign selected in (1) requires »
to be drawn on the convex side. Of course there is no ambiguity about the.
vector curvature,
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The quadric

S(L‘J-—-p)(j)o(m'-—p)-l-QSy(m'—p):O, ............... (x)
in which @ is variable and p constant, has complete contact of
the second order with the surface. We have in fact at the point
& =p, 0=Sdwg,dm+Svd?@, where dw and d*z are differentials
of @ as terminating on the quadric, and this is also true for
differentials of the vector to a point terminating on the surface.
The equation of the quadric may also be written in the form

S(T—p+4 ¢y W) ho(T—p+ g~ v)=Svepy 1y, e (X1.)
and it is not difficult to prove that the principal curvatures are
the parameters of the confocal quadrics
S(@— p-+ o~ )- (o~ = Oy Tv 1) 1@ = pt- by 4) = Sugpy v (X11)
which pass through the extremity of p. The subject will be
resumed in Art. 156, p. 295.

ART. 93. The equation of the normal to a surface at the
point p being
TW=P—EV, seriernrreeaianeonseniincaien: (I)
to find the condition that two successive normals should intersect,
we express that the extremity of @ is momentarily stationary
and we have
d23=0=dp—xdv-—de=dp—w¢dp—udx, (II)
where dz is some small scalar if dp is small (see Art. 87, Ex. 1).
The condition of intersection is therefore
Sdprdy=0, cociiiiniiii (1)
and this is the differential equation of the lines of curvature.
Moreover we have from (Ir.)
dp I (1—m¢)’lu, where Sv(l—aﬁ¢)‘1v=0, ......... (IV.)
because Sydp=0, and from these equations we can find the
directions of the lines of curvature and the principal curvatures
C,=a,""Ty"1, Cy=u,""Ty"! if x, and x, are the roots of the

quadratic.
More directly, we have for the vectors to the centres of

curvature,

B,=p - Cl‘lUy, 13’2=p—02‘1Uv, ............... (V)
and if d,p and d,p are tangential to these lines,
dp=0C,"14,Uy, dyp=0C;""d,Ur; cevvereiinnnn. (vL)

and the measure of curvature, or the product of the principal
curvatures, is

d,Usd,Uy _ VAU Uy i)
= Vaady e :

0,C,=
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if dp and d’p are arbitrary tangential vectors, as we may prove
by supposing p and Uy expressed in terms of two parameters.
The interpretation of this remarkable expression is that the
small area determined on a unit sphere by lines drawn through
its centre parallel to the normals round any small contour on
the surface, bears to the area of the small contour a ratio equal
to the product of the principal curvatures.

If we suppose the vector to a point on the surface to be a
function of two parameters ¢ and w, and if we use upper accents
to denote differentiation with respect to ¢ and lower accents for
differentiation with respect to u, we have

dp = p’dt-{-p/du,

and Tdp?=edt?+ 2fdtdu +gdu?,
if e= —p'2, f= — SPan g=- p,2. Ceerereinaans ..(VIII.)

Writing also v=Vp'p,, equation (1I.) becomes
pdt+pdu—a(/dt+rvdu)—pvde=0, ............. (1x.)

and according as we eliminate z and dz or d¢, du and dx we find
the differential equation of the lines of curvature

di%Sp vy — dtduS(p'v,+ pv v+ duSpry=0, .......... (x.)
or the equation of the principal curvatures (C=x-1Ty"1)
CTA 4+ CTvS(p'v, +v'p, ) v—Svuy=0. ............. (x1.)

It is not difficult to see that we obtain for the measure of
curvature the expressions

C1C,y . T*=Sup"Svp,— (Svp,)?
=SV "Vvp,—(Vvp, 2+ (Sp"p,— p,B); «vvnn. (XI11.)
and that in terms of the deriveds of ¢, f and g,
2Vup"=(e,—~2f")p'+€p,, 2Vvp/=—gp'+ep,
2Vip,=—g,0'+(2f,—9)p, 2(Sp"p,—p)=¢,~2f/+9",
P=f2—eg; i (x1r)

and hence it follows that the measure of curvature is an explicit
function of the quantities e, f and g and of their deriveds, so
that the measure of curvature depends only on the expression
(viiL) of the square of a linear element. If then the surface
undergoes any transformation in which the lengths of linear
elements remain unchanged, the measure of curvature preserves
a constant value.

Arr. 94. The following kinematical method is often useful in investi-
gating the geometry of a surface. Suppose the vector p to a point on the
surface to be given in terms of two parameters, « and v, and let a unit
vector a be drawn at the extremity of the vector p tangent to the curve

J.Q. K
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u variable ; let y be the unit vector along the normal at the same point and
let B=7ya be at right angles to both-—a tangential vector. These three
variable vectors may be supposed connected with three fixed unit vectors
%, J, k by the relations

gig =0, @iqg =P, qRgTI=7; e @)

so that the conical rotation represented by ¢ would bring the vectors 7, 7, &
into parallelism with a, 3, y. These relations being supposed to hold for all
points on the surface, it follows that ¢ must be a function of » and ». It
will be proved in Art. 106, p. 173, that if £ is any vector function of % and v,
its differential is expressible in the form,

AL = V(0 Au+0,a0)E+AE), crereererereeresssersnnn. (i)
where* o'du+wdv=2Vdgg~! and d(f)=ade+ Bdy +ydz if E=ar+LBy+vz

while of course d€ involves differentials of o, 3 and .
We shall write in terms of a, 3, ¥,

o'=aa’+ LBV +y¢, ©0,=aa,+Bb4YC; ceciiiariiininain (111.)
so that equation (v.), Art. 108, is equivalent to
2a’ Oa, o b, .. O Qe

a—a=bc,—blc i il el LA LA N au=ab,—alb 5 ... (IV)
these being the results of equating coefficients of @, 8, y in the equation

cited :
9(w) _9(w)
2]
It will be sufficient for us to confine our attention to the case in which
the curves u and v cut at right angles, so that 3 is tangent to » variable,

since « is tangent to u variable. There is, however, no difficulty in taking
the general case. We have then for the orthogonal curves,

dp=Aadu+BBdv and Tdp?=A%du?+ B’de? ................. (v.)

o that Adw and Bdv are elements of the arcs of these curves. The vector p
being a function of » and », we obtain additional relations connecting the
six sealars «/, ¥, ¢, a,, b, ¢, by expressing that

= Voo,

0? 0 0 02
a;a%ﬁa(““)%ﬁ(m):au_apv' ........................ (v1.)
Now, attending to (11.), we have for example, by (111.),
da=V(0'du+odv)a=(Bc - yb)du+(Be,—yb)dv, ..........(VIL)

and the differentials of 3 and y are obtained by cyclically transposing
o By, @, ¥, ¢,6,0b,c. Hence(vL)at once leads to the three relations
o4 oB

a—+Bc =0, S Ae,=0, Ab,+Bd'=0 .ccccrureunnin (vir)

obtained by equating the coefficients in
04 ) OB .,
S5 a+A(Be,—yb)= a—uB+B(‘ya —ac).

These three relations coupled with (1v.) give all that is necessary for the
investigation.

* Note that Vdgq~* is not a perfect differential.
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To ascertain the meaning of the scalars, observe that the vector curvatures
of the curve « variable and » variable are (Art. 86, p. 134)
Oa 1 f¥+yd O8 1 _as,+ye,

a Aa_ A4 3 av Bb)— B ) setrareracnransens (IX.)

s0 that by what we have shown A4-10" is the curvature of the normal section
through u variable and 4-t¢' is the geodesic curvature of the same curve.
For any curve traced on the surface, if

Udp=U(addu+ BBdv)=acosl+ Bsinl, coslds=Adu, sinlds=Bdv, (x.)
the vector curvature is

d.Udp (al ¢ c . )
—dp =y B—S+ZCOSZ+ESHIZ

- 'yUdp{(a’sin {—b'cos l)%s'l+(a/ sin—b,cos Z)SITHZ yoene(XL)

which follows easily on substituting for du and dv in
d.Udp=(Bcosl—asin)dl+(B(c'du+c,dv) - y(d'du+b,dv))cosl
+(y(d'du+a,dv) — a(c'du+cdv))sinl.

Thus the geodesic curvature depends simply on ¢, ¢, and the rate of
variation of the angle / which the curve makes with « variable. The normal
curvature depends on the four quantities o, a, ¥, 5. The relation (xI.)
includes everything relating to the second differentials of the curve, and if
we write for the curve o'=Udp, y'=U.dUdp.dp™L, y'«'=f3, we may, for
brevity, replace (x1.) by the relation

V' =Y CoSMA Y& SN My eorriireiiiies (x11.)

and we may determine the torsion and everything depending on third
differentials by differentiating once more.

Ex. 1. Determine the equations of the lines of curvature, and prove
Gauss’s theorem that the measure of curvature depends on differentials of
the line element.

[If €" and C, are the principal curvatures, p— C"~'y and p— C,"ly are the
vectors to the centres of curvature, and expressing that these are stationary
for the moment, we have

Aoadu + BBdy — O~ Y(a(b'du+ b,dv)— B(a'du+a,dv))=0,
and according as we eliminate the ratio du : dv or € we have the equation of
the lines of curvature, and the equation of the curvatures,

Add'du?+(da,+ Bb)dudv+ Bbdv?=0, C*AB—-C(H'B—a,4)+a'b,—ab =0.

By (1v.) and (viiL.) we see that the product of the curvatures is a function
of A, B and their differential coefficients.]

Ex. 2. Prove that when the curves % and » are lines of curvature,
b'=C'4, a,=-CB, a'=0, b=0, ¢'= _B—l%{ c,=A—1a—B;
v Ou
and show that
9C, (C'=C)2B oC" (C—C) o4
o~ B ou w4 o

con-d (- 225 )
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Ex. 3. If the curves » are geodesics, prove that we may take 4=1, and
that in this case
1 B o, . ,1 o8B

B o Tt iipow
where @ is the geodesic curvature of any curve, and [ the angle it makes
with the curve u variable.

[Here ¢'=0, so that A is independent of v, and by a change of the
variable « we may put 4=1.]

CC=-

Ex. 4 Prove that the total curvature of any portion of the surface is

HOQdS: —ff%gdudv= —f%—fdv:f(%—(})ds,

where dS is an element of the surface ; and where Z is the angle the bounding
curve makes with the curve u variable, ¢ is the geodesic curvature of the
bounding curve and ds an element of its length.

(a) Examine the case in which the bounding curve is composed of
geodesics.

(iv) Families of Curves and Surfaces.
ArrT. 95. If p=nt; a, b, ¢, ..),ceennnnn e (1)

where 5 is a given function of a variable parameter ¢ and of
certain scalar constants a, b, ¢, etc., the equation represents a
family of curves, any particular member of the family being
determined by assigning fixed values to the constants @, b, ¢, etc.
If there are n constants, the family is said to be n-way, or to be
of the n* order. :

The curves of the family which touch a given surface or inter-
sect a given curve compose « family of order n—1.

If the given curve is p=7,(t,), the condition of intersection

(t; a, b, e, y=m(t) oo (1)
is equivalent to three scalar equations, so that on elimination of
¢t and ¢, from these, we are left with a scalar equation in the
constants @, b, ¢, etc., and thus one of the constants may be
expressed in terms of the remaining n—1.

If the given surface is f(p)=0, the conditions for contact are

&)

F(n)=0, %(t’?—)=o, ....................... ()
and on elimination of ¢, a relation connecting the constants is
obtained, so that a family of order m—1 touches the given
surface.

ART. 96. Expressing that an unknown surface f(p)=0 meets
a curve of the family at the extremity of the vector p in n
consecutive points we have

p=n Svy'=0, Svy"+Sy'¢n'=0,
Svy” +28y" ¢ + S’ py” + Sy’ p(n'n)=0, ete., ...... (1)



ART. o7.] FAMILIES OF CURVES AND SURFACES. 149

where the functions ¢, ¢,, etc., are defined by the relations
dv=¢dp, dty= qu“’p + ¢o(dp, dp), ete. cooninnin. (1)

The first of the equations (1) is equivalent to three scilar
equations, so that the system of equations is equivalent to n+2
scalar equations. We can from these eliminate ¢ and the =
constants a, b, ¢, ete., and the eliminant is a function of p, v, ¢,
$,, ete., and is equivalent to the differential equation of surfaces
met in n consecutive points by curves of the family.

In particular, the equation is equivalent to the differential
equation of surfaces generated by curves of the family.

Ex. 1. Find the differential equation of surfaces generated by parallel
lines.

{Here p=«+2a, Sva=0, and the equation required is Sva=0, o being
a fixed vector and & being arbitrary.]

Ex. 2. Find the differential equation of cones having a common vertex.

[In this case p=a-tx, Svk=0, so that Sv(p —a)=0.]

Ex. 3. Prove that SVar¢:Var=0 is the differential equation of surfaces
generated by lines perpendicular to the fixed vector o.

Bx. 4 The differential equation of surfaces generated by lines which
meet the fixed line V(p—B)a=01is SV¥V(p—B)a. . VvV (p—B)a=0.

[If p=x+¢A is a generating line, S(x —,é;o.)\=0, SvA=0, SApA=0.]

Ex. 5. Find the differential equation of ruled surfaces.

[We have SrA=0, SApA=0, SAp,(AL)=0, and the equation is obtained
by solving for A (Art. 74, Ex. 3) from the first and second and substituting
in the third.]

Ex. 6. Find the differential equation of surfaces generated by similar
and similarly situated curves.

[Here a generating curve is p=«+aa(¢) where « and ¢ are constants to
be eliminated and where a(¢) is a given function of ¢.) )

Ex. 7. The differential equation of surfaces generated by equal and
similarly situated ellipses is
SVVaB.v. ¢. VVaB.v=(Sar?+SL3},

« and 3 being a pair of conjugate radii.

ART. 97. As in the last article, being given the scalar equation
of a family of surfaces involving n constants,

flps a,be,..)=0, i (L)

we can determine the differential equation of a surface which at
each point is touched by some member of the family in as many
consecutive points as serve to eliminate the constants.

If only one constant is involved, only one surface is touched
at each point by a member of the family, and that is the envelope
obtained as the locus of intersection of consecutive members by
eliminating the constant a between

f(p, «)=0 and zi(a’;'(;—@:O. .................. (1L)
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If two constants are involved, the conditions for contact with
some unknown surface at the point p are
v=ay, flp; a,by=0,. ..ol (111.)
where v is the normal to the unknown surface and y, the normal
to the surface of the family. The first equation, on elimination
of the unknown scalar z, is equivalent to two scalar equations,
and between these and the second we can eliminate ¢ and b, and
we obtain the differential equation of the touched surface as a
function of p and y, homogeneous in y.
When the family contains three parameters, we express that
the surfaces touch at two consecutive points, and we have

v=av, ¢pdp=z¢dp+dz.v,=0, f(p; a, b, ¢)=0, Sydp=0. (IV.)
We can eliminate dp and replace the equations by
v=2ay, Su(p—2a¢y) v=0, f(p; a, b c)=0;......... v.)
and these equations are equivalent to five scalar equations from
which to eliminate z, a, b and c.
Observe that we find two directions dp for contact according
as we substitute one or other of the values of x given by the

scalar equation (v.) in the second equation (1v.)

It is not hard to see that each additional condition of successive
contact affords one additional scalar equation in x and the
constants. In fact if we attend merely to the new unknowns
d™p and dmz introduced in d™-'(¢dp—x¢pdp+diav)=0 and
d™-'Sydp =0, we see that they occur 1n the forms

d™p+(p—xpy)~lyy . d™x+ete.=0, Spd™p+ete.=0;
and when we eliminate the vector d™p, the scalar d™x disappears
also by (v.). The preceding vector condition
dm‘2(¢dp — x¢0dp -+ d.’m/(,) =0
serves to eliminate d™-'z, and so on.

The conditions of contact at n—1 successive points serve to
eliminate the n constants, and the result is the differential
equation of surfaces touched at each point by some one member
of the family in m—1 successive points. In particular, the
equation is the differential equation of envelopes of the family
obtained by replacing the n constants by arbitrary functions of
a single constant.

When the family of surfaces is given in terms of two para-

meters ¢ and w, p=n(t, w; a4, 0,6 ..) i (VL)
we have v=uVyy, dv= ¢(q’dt+n,du)=ach;1’n,+V;7};7/dx, e (VIL)
and on direct elimination of df, du and du,

Sv.[¢n' —aV(y'n,+n'n))[¢n,— 2V (17,4 47,)]=0. ...(vIIL)
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The next differentiation introduces d?, d?w and dZr, and these
being eliminated by an equation analogous to (VIIL) we use (VIL)
to get rid of d¢, du and da.

Ex. 1. Prove that for the envelopes of a family of spheres,
+UvR=p—«,

where « is the vector to the centre of a sphere and R the corresponding
radius.

Ex. 2. The differential equation of envelopes of spheres of constant
radius whose centres lie on a curve on the surface fp=0is f(p+ UvR)=0.

Ex. 3. The differential equation of the envelopes of spheres having their
centres on the ellipse p=a cost+Bsint is

(Sapv)+(SBpv)t=(Safv)™
Ex. 4. Find the differential equation of developable surfaces.

Ex. 5. Show how to find the differential equation of the envelopes of a
surface carried parallel to itself.

[Take p=8+7(¢, u).]
Ex. 6. Find the envelopes of a rotated surface.
[Take p=¢.7n(t u}.¢7".]

Art. 98. A differential equation of the first order presents
itself in the form F =0
(py ¥)=0, i, (1)

homogeneous in . For any variation of p and v subject to this
condition, d. F(p, ) =S7dp+Sudv=0,...ccoorrrrrrrs, )

where v and u are determinate functions of p and ». If the
equation has a solution, there must be some scalar function of

p» so that d.fo=nSudp, eveerreraeeririnane, (1r.)
and for any arbitrary differentials of p, if dn==Sadp,
d/dfp = ’nSd'udp + nSledp + So’d/pSudp
=dd’fp=nSdvd’ o+ nSvdd’'p+SadpSrd’p,
80 that (compare Art. 91)
S(nd'v—oSud'p+vSad’p)dp—nSd'pdv=0;......... (v.)

and this general relation must include (11.) as a particular case.
Hence for some differential d’p satisfying Syd’p=0, we must

have xrT= 'nd'y—}-ySo'd’p, Tp= — ’Ild'p, ................. v.)
and from this we have the equivalent of Charpit’s equations
dp_ _Vrdv Sudp=0. c.veeeenreeriererenennd VL)

" Vor’
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EXAMPLES TO CHAPTER X.

Ex. 1. Determine the equations of the osculating circle and osculating
helix of a curve in terms of the vectors a, 3, y and the scalars a, and ¢,
corresponding to the point of contact, and find the deviation of the curve
from the circle or helix.

Ex. 2. Show that the vector to a point on an ellipsoid may be expressed
in the form

p=acosu+Tsinu where Tr=5b, SAr=0, TA=1,
the vectors A and o being constant but = being variable.

(a) A tangential vector is )

dp=(—asinu+7 cos u) du+ At sin udt,
and the equation of the tangent plane is
Svp=02Sha where v=VAr (asinu—7 cos u).

Bx. 3. The differential equation of a geodesic on the quadric Sp¢p+1=0
is Spdpd?p=0.

(«) This equation, which expresses that ¢p, dp and d’o are linearly
connected, may by the aid of the differentials of the equation of the quadric

be replaced by Sdpd?
2, aq,5dpd?  Sdpdp_ .
d?p—dp dp* +¢p bp? =0;

and operating by S¢dp an integrable relation,
Sd’pddp _Sdpd’p  Sdpdp_,
]

Stpodp ~ dpF * p?
is found which affords the integral
Sdpgdp. pp?=C. dp*

(b) The geometrical interpretation is that PD is constant along the
geodesic, where P is the central perpendicular on the tangent plane and
where D is the diameter of the quadric parallel to the tangent to the
geodesic. (Compare Ex. 14, p. 287.)

Ex. 4* A unicursal curve of order n is represented by an equation
of the form ( 3, )"
p="00 01 % .. o i, ;
Aoy Ay Ag aas Tnlly
( fz, 1)

and in general this equation may be transformed into
p=Lo+2" ’g% Iy

and the curve may be described as the locus of the mean centre of corre-
sponding points on # homographically divided lines.

(@) The equation of the asymptotic tangent parallel to (3, is

p=P+2" meB—mbl +uf;.

Bx. 5. Find expressions for the curvature and torsion of a line of
curvature on a quadric in terms of the elliptic coordinates of Art. 84.

Ex. 6. The vectors p=0(¢) to points on a curve are transformed by the
operation of a linear vector function ¢. Compare the curvature and torsion
at corresponding points.

*SQee Proc. R.I.A., 3rd Series, Vol. iv., 1897,
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Bx. 7. () If o, B,y and 8 are vectors from a common origin to four
points 4, B, ¢ and D, it is always possible to determine four scalars a, b, ¢
and d, so that aa+b,[§)+cy +d8=0.

(b) If the sum of these scalars is zero, the four points lie in a plane.
(¢) It is also possible to determine a second set of scalars so that
Ao 1+ VB 14y +dE1=0.
(d) If the sum of this new set vanishes, the points lie on a sphere passing
through the origin.

(¢) The equation of this sphere may be written in the form
Sp1 (B 1y +y la a1 B = Sa 1By,
(f) If it is possible to determine a third set of scalars so that
k4B dyhad B,
the four vectors are edges of the right circular cone
SUp(U.By+U.ya+U.a)=8U.afy.

(g) If the additional condition is imposed that the sum of the scalars of
this third set vanishes, the four points lie on a surface whose equation may
be written S p% -1

3

A being a constant vector.
(%) Discuss briefly the nature of this surface. (Bishop Law’s Premium.)

Ex. 8. The differential equation of surfaces generated by lines of the
complex (Art. 36, Ex. 4, p. 40)
Sflo,m)=0

may be found by eliminating o and 7 between this equation and
o=Vpr, Syr=0, Srdr=0.
(a) For the linear complex S(ao+ 37)=0, the equation is
S.Vv(Vap+B)pVv(Vap+B)=0.
(b) Lines common to the two linear complexes
S(ac+P1)=0, S(yo+8r)=0,
generate the surfaces whose differential equation is
S.v(Vap+B)(Vyp+8)=0.
(c) Find the differential equation of surfaces generated by lines of the
congruency
flo, 7)=0, S(ac+P7r)=0.
Ex. 9. If the vector 8 is a given function of a variable unit vector a,
the equation Vip-B)a=0
represents a congruency of right lines.
(@) If dB3=¢da determine the meaning of the several terms in the equation
¢da +2de+adr = Pada.

(b) A line of the congruency is intersected by consecutive lines at two
focal points p=3+za where # is a root of the quadratic

Sa(p+2)ta=0, or Sa(a?+xxy+V)a—Sea?=0,
€ being the spin-vector of ¢ and ¢, being the self-conjugate part.
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(¢) The points of closest approach of consecutive rays to the ray p=8+xa
lie between the extreme points determined by the condition that SUda¢Uda
may be a maximum, ang the corresponding values of « are the roots of the
quadratic

Sa(dy+x)la=0, or Sa(z?+ay,+Ve)a=0.

(d) The vectors of shortest distance at the extreme points between the
ray o and its consecutives are mutually perpendicular ; and if these shortest
vectors are parallel to the unit vectors a” and a, the extreme points are

determined by #'=8apa, and z=Sd¢pa’.
) (e) If the vectors a, o/ and «, are in positive order of rotation so that
ao,=a, Sa'pa, = —So,Ppa’'= - Sea ;
and if the shortest vector at the point corresponding to # makes the angle u
with o so that . Uada=a'cos %+ a,sin %,
the scalars # and P are connected with #’ and z, by the relations,
o= cos?u+x,sin?u, P=Seo+(z,—2')sinucosu.
Bx. 10. A circle may be represented by means of a pair of vectors (k, A)
since its equations may be thrown into the form
T(p—«)=TA, SA(p—x)=0;
and an equation such as Sy, A)=0,

where f is a general function, may be regarded as representing a family of
circles.

() In like manner an equation such as
Sfa, B, ¥)=0 where Sef3=0

represents a family of conics, y being the vector to the centre of one of the
conics and a and (3 being its principal vector radii. (Compare Ex. 11, p. 103.)

Ex. 11. The general surface generated by a variable circle (x, A) may be
represented by
p=k+Ar where SAr=0, Tr=1,
the vectors « and A being functions of a single parameter and the auxiliary
vector T being arbitrary so far as the conditions allow.

(a) If P is a scalar analogous to the parameter of distribution of a ruled
surface -
’ Pd—-T=d:< +d.Ar. Hence dT=7~'dA——d5,

T Pr—A
and because Sdr=0, Srdr=0, we find

p=S(dx - 7dA)A_ S(dA+7dx) A
Srdx StdA
(b) These expressions for /’ lead to four values of the vector 7 which

determine points at which neighbouring elements of successive circles
approach most closely or are most widely separated.

(¢) 1f successive circles intersect in one point
T(VAAASAAA +VdAxASdeA)=T. ASAdAdx
and the vector to the point of intersection is

VAAXSAAA + VdxASdxA

=«t SAdAdx
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(d) If successive circles intersect in two points, the vector just found
becomes indeterminate, and

VAAASAAA + VdxASdkA=0;

and when this condition is satisfied, the surface may be generated by the
motion of the sphere,

2}
T(p- kAN (14320
(¢) In the general case, the equation of a normal to the surface is
V.(p—k—A1)Vr(dc+VdAA.7)=0;
and when this is expanded we obtain two scalar equations which combined

with the equations of condition enable us to eliminate 7, so that we find the
equation of the surface generated by the normals along the circle (k, A) to be

S(p— k)dk —SAdA + S(pd A — kd - dkA) UV (p~ k) A=0.

This surface is of the fourth order, and normals at the extremities of
diameters of the circle intersect in a nodal conic.



CHAPTER XL
STATICS.

ART. 99. If o is the vector to the point of application of a
force which is represented in magnitude and direction by the
vector 8, the moment of the force with respect to the origin is
VaB—the vector area of the parallelogram determined by a
and 8; and the moment about the extremity of the vector vy is
V(a—7)B. The force may be replaced by an equal force 5 at
the origin, and a couple VaB; or by an equal force 3 at the
extremity of the vector y and a couple V(a—y)@.

For any number of forces, the quaternion quotient of the
resultant vector moment at the origin by the resultant force is
(Elements, Art. 416 (11))

q=2§l§ﬁ=p+m where p=8q, o=Vq; ccecn.... (L)
and because ZVaB=pEB+8EIB=pZB+VpZ8, .....c...c...(IL)
if p is the vector to any point on the line represented by

VpSB=5ZB8=(ZB)"1V.ZBZVaf, ceerrernnn (11L.)

we may replace the system of forces by a force 33 acting along
the line (111) and by a couple pZ3 having its axis parallel to
that line. This is the reduction to Poinsot’s central axis.

The system of forces constitute a wrench upon a screw ;* the
scalar p, which is independent of the origin, is the pitch of the
serew, and the vector @ is the perpendicular from the origin on
the axis of the serew—Poinsot’s central axis.

If the resultant reduces to a single force, p is zero or
S3VaB(EB)-1=0; and if they reduce to a couple Z3=0 and p
is infinite. If the forces equilibrate

IB=0, .ZVaB=0. .ccovirnirnencnannn @av.)

*Sir Robert S. Ball, Treatise on the Theory of Screws, Cambridge, 1900.
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Hamilton uses a second quaternion

Q=§%§=S§zﬁ+q=p+‘y, .................... )

and the scalar of this quaternion is the pitch while the vector
terminates at a point which is independent of the origin—the
Hamiltonian centre of the system of forces. This point is
evidently situated on the central axis (ITL).

The quaternion aB is called by Hamilton the quaternion
moment of the force 8 with respect to the origin. Its vector
part is the moment of the force and its scalar part is minus the
virial. We shall write for any number of forces

SaB=u+m", ZB=N, oo (vL)
g0 that we have

p=VZaB=prA+o\, y=0+mA" L ... (viL)
where u is the resultant vector moment at the origin and where

m” is minus the resultant virial at the same point. The plane
of mo wvirial is represented by

SZ(a—p)B=0 or SpA=m"; . cirrrcn.. (viiL)

and Hamilton’s centre is obviously the intersection of this plane
and the central axis.

Ex. 1. Vectors (o) are drawn from a variable origin to the points of
application of forces (8). The equation

ZVaf=0
implies equilibrium.
[If the vectors oy are drawn from a fized origin to the points of appli-
cation, we must have separately 23=0, ZVa,3=0 (Elements, Art. 416).

Ex. 2. Forces act at the vertices of a triangle, in its plane and pro-
portional and perpendicular to the opposite sides. Prove that they are in
equilibrium.

If o, B and y are the vectors from a wariable origin, the forces are
v(B~7), v(y—a), v(a— B) where v is a vector perpendicular to the plane of
the triangle. The moment formed as in the last example vanishes identically
because Vavf3=V fBva, etc.]

Bx. 3. The conditions of equilibrium of a rigid body may be expressed
by the equation >88da=0,

which contains the principle of virtual velocities (Elements, Art. 416 (17)).

[For any possible small displacement of the body da=8+ Vwa where &
and o are arbitrary. Hence 28=0, ZVaf=0.]

BEx. 4. The moment of the force AB about the line cp is six times the
volume of the tetrahedron aBcp divided by the number of units of length
in cD.

[The vector moment at the point ¢ is V.ca. AB and the component along
¢pis —S(Ucn.V.ca.aB)=-8.cp.ca.aBT.cp™1]



158 STATICS. [cmAP. x1.

Ex, 5. A force of unit intensity acts along the line V(p—a)B=0. Its
moment about the line V(p—a)3'=01is —S(a—a)UBR"

Ex. 6. If three forces are in equilibrium, they must be in the same
plane.

[Operate on the condltlon V- a.),8+V(p )B +V(p a)B"'=0 by
S(p—a) and put p=a’ where we find S(o’—a)(a’' - a")3"=0

Bx. 7. If four forces are in equilibrium, their lines of action are
generators of a hyperboloid.

[One method of proof (Chap. VIIL, Ex. 10, p. 103) is to express the four
vector moments Va,f3,, etc., in terms of the four forces by means of a linear
vector function, so that Van,B”=¢Bn+w. The vector @ is zero because
2Va,B,=0, 28,=0, and therefore the equation of a line of action is

p=¢B,8,"1+xB, (See Art. 79, p. 116.)]
Ex. 8. Resolve a wrench into forces along the edges of a tetrahedron
ABCD.

[If p is the moment and A the force of the given wrench at the fixed
origin of vectors o, the moment at the point p is

p—V.0oP. A=2¢3V.PA. AB
where #,5, etc., are scalars proportional to the forces along the edges. Take
the point P at p, and
pm—-V.0oD.A=t,5. V.DA.AB+7cV.DB.BC+icaV .DC.CA .
serves to determine three of the unknown scalars. Operate by S.pc and
tan.S.DA.DB.DC=S(u—V.0D.A)DC, Or £45.(aBCD)=8.cD. u+S.0c.0D.A.]

Art. 100. To reduce a system of forces to two forces, let
w and X be the resultant couple at the origin and the resultant
force of the system, and assume

pw=VaB+Va's3, A =.,3-|—,8/, .................... (L)
where B and B’ are the two forces and « and a” the vectors to
their points of application. Hence

B'=A=8 u=V(a—a)B+VaA; ..co.cceoc.. (IL)
and from the form of the second equation, it is obvious that if
two of the unknown vectors q, o', B are suitably assumed, the
third may be regarded as the vector to a point on a determinate
line. But a condition must be satisfied, for on operating in turn
by S(A— ) and S(a—a’) we have

S(A—=B)r=8xe8 and S(a—a)u=8Sad}, ........(11L)

so that if any one of the three unknown vectors is assumed
(say a) the other two may be regarded as terminating on
definite planes. Suitably selecting either 8 or o« in accordance
with (111.) (which is a consequence of (11.)), the remaining vector
is constrained by (11.) to terminate on a line.

Ex. 1. A rigid body is acted on by any number of forces. It is required
to equilibrate the body by two forces whose points of application are
situated on given lines.
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[If & and & are the required forces and V(p—a)B=0, V(p—a')'=0 the
equations of the given lines, we have

A+E+E=0, p+V(a+af)é+V (' +2/B)E=0,
where x and « are scalars. Hence
S(a—a'+2B-2B)p-S(a+zB) (o' +2/B)A=0,

and this equation of condition establishes a homography connecting the
points of application.]

Bx, 2. A framework is composed of rods jointed by smooth hinges.
Three of the rods, A,4;, A.4, and A4, terminate at a point A, and are acted
on by given wrenches. Determine the reactions at the joints; it being
supposed that the three rods are not coplanar.

[Let (ttmny Amn) represent the wrench applied to the rod A,an, the origin
of vectors being taken as base-point, and let (3., be the reaction of the joint.
on the rod at the point 4,. For equilibrium of the rod 4,4,

par = VpAy+V(a,— ) By +V(a,— p) B =0,
and putting p=a,, this gives
a1 = Vayhy +V (ag— 1) 84, =0,
or, for some scalar 2z,
Bu=(pa — Vaydy +24)(ag—ay)™

For equilibrium of the joint A, we have B, + B4+ Bis=0, or

22 (gn — Vaudp)(ay - an) = = 2% (0 — a)™
and from this vector equation the three scalars z,, can be found.]

Ex, 3. A rigid body is in equilibrium under the action of an impressed
gystem of forces (i, A) and the tensions of two strings a’a and 8’8 attached to-
points A’ and ¥ in the body and to fixed points a and 8. Show that the
forces exerted by the strings on the body are represented by

rla-a)=LEABEL (g gy et

where x, y and ¢ are scalars which may be determined by expressing that.
the lengths of the lines A’A, BB, A’8’ and aB are given, and where a, 3, o’ and
3 are the vectors from the hase-points to the points 4, B, A" and B'.

(#) What condition is implied in these equations?

(b) If a, b, ¢ and d are the tensors of the vectors a’a, B'B, A'E’ and AB,
respectively, show that the scalar ¢ satisfies the equation

c=T{aU(u+AB+) +bU(n+ Aa+1)+d}.

ART. 101. The resultant quaternion moment (Art. 99 (VL))
for an arbitrary base-point (the origin of the vectors a) of a
system of forces (B3) acting at points fixed in a rigid body is the
first quaternion invariant of the linear vector function

Ppp=2aSBp, «reeverunn e ¥y

the first scalar invariant of this function being minus the
resultant virial (m”=2SqeB8), and double the spin-vector being:
the resultant vector moment (u==ZVaf). -

+ % That is the invariant —¢t.s—¢j.7~¢k. k. Compare Art. 67, Ex. 7, p. 97..
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If the forces receive a common conical rotation round their
points of application so that each vector 3 is replaced by q8¢ -7,
the function ¢p changes into ¢(g-!pq); and if the body is
rotated so that « becomes qaq~!, the function becomes g(¢pp)q
The results of Art. 70 show that there are four rotations
applicable either to the body or to the forces which render the
function self-conjugate;* and in this case the resultant is a
single force passing through the origin. These four positions
of the body relative to the forces are called the initial positions.

If A(=ZB)=0, the resultant is a couple for all relative
positions. If the forces are in astatic equalibrium, the couple
(as well as the resultant force) must vanish for all rotations; but
this can only happen when the function ¢ vanishes identically
because a function such as g(¢p)q ! cannot be self-conjugate for
all quaternions q. Thus the necessary and sufficient conditions
for astatic equilibrium are

=0, A=0; (11.)

and these are equivalent to twelve scalar relations connecting
the forces and the points of application.
In general reduction of the function ¢ to a trinomial form

Pp=Y1Np+ ¥ hep+VsSAsp, Ay F A+ A=A, eenn (L)

in which X\, and ), are arbitrarily assumed, corresponds to the
reduction of the system of forces to three forces A, A, and A,
astatically equivalent to the given system; and it is easy to
see that the points of application of these forces, the extremities
of the vectors v, =¢VAA; :SA AN, ete, are fixed relatively to
the body and lie in the central plane

SpyA=m or Spd  MA=L ... (IV)
Reduction of the function to the standard form of Art. 70 gives
a particularly simple set of equivalent forces or couples.

The vector ¢\ is obviously fixed in the body, and when the
origin is transferred to the extremity of the vector ¢.A~! the
linear function (which we continue to denote by ¢) corresponding
to this special origin—the astatic centre—satisfies the condition

PA=0. et (v)

As one root of ¢ is now zero, the function is reducible to the
binomial form, and the auxiliary y function is of the type

\ﬁp = )\Slcp ............................... (VI.)

where « is a vector fixed in the body. The equation of the
central plane is now Sxp=0.

*These are the rotations which convert ¢, j/, ¥ of the article cited into
+3, 44, +k; +i, ~j, k3 —i, +j, —k; or -3, —j, +k Compare the foot-
note to the article cited. i’
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In addition to the equations (v.) and (vi.) we have
PA=VAp and Gu=¢u=Vkd; ..cocoieiririinnnnins (viL)

the first is obvious because p is double the spin-vector and the second follows
from Art. 68 because — ¢p is double the spin-vector of Y. These relations
coupled with the expression

B=PAEVHA i e (vuL)

for the moment in terms of the pitch p and the vector n from the astatic
centre to a point on the central axis of the forces in any position enable us
to deduce all the theorems of astatics. We first remark that the function ¢’
is fiwed relatively to the body (or to the vectors a) and that the function ¢'¢ is
Jfized relatively to the vectors (3 (or to the directions of the forces).

In order to determine the arrangement of the central axes relatively to
the forces, operate on (vii1.) by the function ¢, and by (vi1.) we find

so that THVHA=TVkA or SVyAFSVyA=(VKA); rerrrerreren. (x.)

and therefore relatively to the forces the central axes compose a coazial family
of similar elliptic cylinders whose linear dimensions are proportional to the
cosine of the inclination (TVUkA) of the central plane to the axes whose
direction (UA) is of course fixed relatively to the forces.

The arrangement of the central axes in the body is determined by the

equation
b FA=VAVYA .o ettt et aeas (xL.)
obtained by operating on (viir) by VA and attending to (vir.). Taking the
tensor
TVhA=TPUr=(~SUAPIUL)jeeeiurrirecierinns (x1L)

and the locus of central axes having a given direction U relatively to the body
is a right circular cylinder whose radius is the reciprocal of the parallel
radius of the elliptic cylinder

Td'p=TA or Sppdp=A% ..ccvviiiiiiniicnrannes (x111.)

To each generator of a cylinder (x.) corresponds one of the cylinders (x11.)
which is traced out by that generator when the forces are rotated round the
vector A. In terms of the vectors o and 7 of Art. 36, Ex. 4 (|| A), we may

replace (x11.) by
P TATT =TTy covviiinniininreciiiciieninens (x1v.)

and this equation represents a complex of the second order—tke assemblage
of lines in the body which become central axes by suitable rotation of the forces.

We shall now determine the pitch corresponding to each central axis.
Operating by ¢’ on (viiL.) we have by (viL)

PEAFP VA =ViA, eviieiriiiiiiiiiiiiiiinnin (xv.)
and operating on this by S¢'A or SVAux or SVAVyA we deduce
PTP' A2 —BAPP' VA =TAZknA. cevireiiiiiiiiiainnne (xvL)

This equation gives p in terms of the vectors determining the central
axes. Again we obtain an equivalent expression by taking the tensor of
(xv.), and on replacing A by 7 and V»A by o the result is

PTd'7?— 2081’ + Td'o?=TVkrl ..., (xvIL)

This represents a complex of the second order and the lines common to
the complex (x1v.) compose a congruency of the fourth order and the fourth
J.Q. L
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class—the assemblage of lines in the body which become azes of screws of given
pitch for suitable rotation of the forces*

Since (xv1.)is linear in 7, it represents a plane when the direction of A
is given which cuts the cylinder (x11) in two axes corresponding to the
given pitch. The plane touches the cylinder if

PTENTAL= £ TVA(SHA+KTAD,ccoocvmrirrnraene. (xviIL)

and this relation determines the limiting values of the pitch for a given
direction UA.
The function ¢yp corresponding to an arbitrary base-point —the extremity

of the vector 5—1s Prp=BP = NSAL everrrrenrirenteni (x1x.)
because ¢p is of the form ZaSS3p. The function ¢y’ for this base-point is
Py p=0P'p—TA2. PSP jeceeriiiiiiniiiiiininninns (xx.)

and supposing «? to be a latent root and o to be a unit vector along the
corresponding axis, it appears on inversion of the function ¢’ —u? that the
latent roots (w2, w2 u'?) of ¢qy’ are parameters of the quadrics of the con-
focal system (fixed in the body)

Sp(pg — w2y LpTA =1 (i (xx1.)

which pass through the extremity of 7, and that the axes (a, o, «”) of the
function are the normals to these confocals. Reduction of ¢y, to the
standard form of Art. 70 gives

Pup=uaSBp+ua’SFp+u'a’S J2 4f RO reeraenes (xx11.)

where the unit vectors 8 are likewise mutually perpendicular so that the
system of forces may be replaced by A acting at the extremity of 5 and by
three couples (such as that due to the unit force +f acting at the extremity
of n+4ua and — B acting at the extremity of n —3ua) whose arms (ua, w'a,
o) are mutually perpendicular as well as the forces (8, 3, 8").

The parameters of the confocals (xx1.) touched by an arbitrary line (o, 7)
are the roots of the quadratic equation (Art. 83, Ex. 2, p. 124).

STV — (M — ) +uthr +So(p —ut)or. TA2=0

where M” is the first invariant of ¢¢’, observing that in general the
A function of ¢¢’ is Y'Y ; or of the equation

wfTr2 — w2 (M T72 - T'r2+ To?TAZ) + T2+ T¢'o?TA2=0; ....(XXIIL)

and when the line belongs to the complex of central axes (x1v.) the equation
reduces by (xviL) without much trouble to

wA— M2+ M = p T U+ 2pSTIhP T cerrrcnnnnn. (xx1v.)

where M'(=T«?TA?2) is the second invariant of ¢¢’ or the first of y¢. This
shows that the central awxes touch confocals having the sum of their parameters
constant and equal to X ; and in particular we have Minding’s tlgjeorem for
p=0 that the lines of action of single force resultants intersect the focal conics
of the system (XX1L.) since the parameters of the touched confocals are in this
case the finite latent roots of ¢¢p’ and the focal conics obviously correspond
to these parameters. The theorem respecting the constant sum of para-

* The former equation (xvL.) in terms of 7 and o is
pT¢'r2 - Srepp'c =TANT8ke ;
and on rationalization this is seen to represent a complex of the fourth order, and
it may be shown that coupled with (x1v.) it reduces to (xviL.) affected by the factor
Te'r%
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meters is otherwise deducible from Art. 83, Ex. 3, for the cone of lines of
the complex (x1v.) through the extremity of the vector 7 is expressible in

the form ST(hg’ — TnTAZ=yTAZ. Sp)T=0. ..vvrvrearerern.. (xxv.)

Moreover (Art. 83 (x.)) this is the reciprocal of the tangent cone to the
confocal (xx1.) whose parameter is u2=Ty2TA% According as the tangent
cone becomes more and more obtuse by variation of the vector » and finally
becomes a tangent plane, the reciprocal cone becomes more ang more acute
and finally coincides with the normal to the quadric, and the locus of such
points is the surface

Sy’ —~Tn*TA)ITA2=1. ..ccvvrrrrnrrrrnnn.. (xxvL.)

This surface is a quartic analogous to Fresnel's wave-surface, and its
equation may be reduced to the form

_TVky_ TVky Tx
= Tq.’)/’f] —T¢/ K_IVKn_l‘(ﬁ/U . KEIVK’)], ............

remembering that ¢’«=0. In this form it is apparent that the surface
consists of a system of circles concentric with the astatic centre, coplanar
with the vector x and of radius proportional to that of the elliptic cylinder
(x111.) which is parallel to the radius in the central plane. For points inside
this surface the cones of axes are imaginary.

The boundary of the region containing the feet of central perpendiculars
on the axes has been investigated by Tait (Quaternions, Art. 403).

Expressing that Ty is a maximum when Up is given and when 7 is
subject to the conditions (xxv.)

Snr=0, St(¢p¢’—~TnTAZ)7r=0,
the equation of the boundary is found to be
S(dd =Tn?TAD LN =0 juccrerrereirierreeeeenne. (xxvIIL)

and this represents a surface of the sixth order analogous to the inverse
of a Fresnel's wave-surface, and on expansion it affords a quadratic in Tn?
corresponding to any given value of Un whose roots are the limiting values
of the squares of the perpendiculars.

Ty

Ex. If vectors are drawn in the body from an atbitrary base-point to
represent the resultant moment, the locus of their extremities is an ellipse
when the forces receive all possible rotations about a given axis.*

[Here p=VZagfBq'=VZa(l+2)B(1+¢)"" where ¢ is the tangent of
half the angle of rotation and where ¢ is a unit vector along the axis of
rotation, and the form of this equation establishes the theorem.

ART. 102. The resultant of any system of forces has been
reduced in Art. 99 to a wrench which may be denoted by the
symbol (u, A) where

E=PAF VRN (L)

is the resultant moment with respect to the origin, where pis
the pitch, where y is the vector to any point on the axis and
where \ is the resultant force. The wrench (fu, t\), where ¢ is
any scalar, has by (1.) the same pitch and the same axis'as (u, \).
It is therefore said to be a wrench on the same screw as (u, )
and it may be denoted by ¢(u, \). The intensity of a wrench is

*8ee Joly, Trans. R.I1.4., Vol. xxxii., pp. 218 et seq.
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the magnitude of a resultant force (TX), and the wrench (tu, tA)
has ¢-fold the intensity of (u, A).

It is often necessary to compound wrenches situated upon
different screws, and we shall investigate the simplest expression
for the wrench

(1, M) =1, (g, A+ 8o, Ag)F15(thgs Ag) wvvvevvnnnn (1)

which is the resultant of three wrenches of arbitrary intensity
situated upon three given screws.* Introducing a linear vector
function ¢ determined by the three conditions (Ex. 9, p. 103)

M= PN, g = PNy, Mg= PAg e (III.)
we have p=¢r if w=Ztw, and A=ZtA;; oo (IV)

and thus (¢), A), in which \ is arbitrary, is the general expression
for a wrench that can be compounded from wrenches on three
given screws, or conversely, that can be resolved into wrenches
on the given screws.

To reduce the problem to its simplest form, let e be the spin-
vector of ¢ and let ¢, be the self-conjugate part; then

o= Ver+ A = Veh — aiSiA — bjSjA — chSIA ......... )

where @, b and ¢ are the roots of ¢, and where ¢, j and k
are the corresponding axes. Thus the wrench (u, A) may be
compounded from the wrenches (Veidai, 1), (Vej+by, J),
(Vel+ck, k), situated on screws whose axes ¢, j and k are
mutually rectangular and which intersect at the extremity of
the vector e. The corresponding pitches are of course a, b and ¢;
the latent roots of the self-conjugate part of the function ¢.

The pitch of the wrench (¢X, A) and the vector perpendicular
on its axis are respectively (Art. 99)

P=SPA. AL, T=VEA AT (vL)

thus p is the reciprocal of the square of the radius of a quadrie
and the vector @ terminates on the surface represented by

VoL
S Vz:s¢’z3+ 1=0, oo, (VIL)
because Vog'm || X and therefore m=V¢Vopm(Vogp'®)-!; and
this surface is a quartic with three intersecting double lines—
the axes of ¢". (Steiner’s quartic surface.)

When the origin is taken at the extremity of the vector ¢, the
function ¢ is self-conjugate. This point is the centre of the
three-system of screws. In terms of the pitch p and the vector 4
from the centre to any point on the axis of a screw of the

system, w=PA+ VA= A=\, ceceeeeerieannnnn. (Vi)

*See Joly, Trans. R.I.A., Vol, xxx., Part xvi., and Vol. xxxii., Part viii.
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so that A 1s an axis and p the corresponding root of the function
¢p—Vnp. The latent cubic of this function is (Art. 68, p. 98)

Sp(p—p)yp=m—pm +p*m" —p%; ..iiiriaen . (IX)
and as » varies, this represents a quadric surface—one set of
generators consisting of the axes of screws of given pitch which
belong to the three-system. Three axes pass through an
arbitrary point, and the sum of the corresponding pitches is
constant and equal to the first invariant of ¢. Two axes lie in
an arbitrary plane Say+1=0; their directions (compare (VL))
are determined by

Sad=0, SagA\ " 1+1=0, .ccoorrnnnninnn. (x)
and the corresponding pitches are the roots of
Sa(yr—px+pHa=1 .o (x1.)

which is the condition that the plane should touch a quadric (1X.).

In order to reduce to a canonical form the two-system of
wrenches compounded from two given wrenches (u;, A;) and
(19, Ap), we assume in conformity with the foregoing a function
¢ which satisfies the relations ‘

M=y Pha=pgy VAN =VeVA Ngeurrnnnnnnn. (X11.)
where ¢ is the spin-vector of ¢. The function (¢ — Ve)p will then

be self-conjugate and will have a zero root, VA\, being the
corresponding axis, and it will be expressible in the form

—aiSip—bjSjp. We have (Art. 27, p. 25)
$p=wSN(VA ) 1o — saSA (VAA) o
+VeVALS(VAN) 1o, voveenenn (x111.)
and the spin-vector is deducible from the relation
2e =V {(u:ds— A D (VA ) 71} + VeVA R (VAR,) L
Operating by SVA\; we find
. 256 VA =S (uhe — uohy)
which gives
e=V{(As— A (VAA) 1 = E(VAN) 1S (he — oy’
Taking the origin at the extremity of the vector ¢, a wrench
of unit intensity compounded from the two wrenches is deter-
mined by
u= pA=a3 cos u+bj sin u=p (i cos u+j sin w) + Vy(i cosu+j sinw),
A=1COSUATSIN U} cuiiniiiiiiniiiiiiiiiei e (xX1v.)
whence the vector equation of the cylindroid—the locus of the
central axes, and the equation for the pitch are

n=(b—a)ksin wcos u+t(¢ cos u+ysinu), p=acos*u+bsin*y
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where u is the angle the axis makes with the vector <. The
scalar equation of the cylindroid is found on elimination of w

to be TVEnSky=(a—=b)SinSi e cveeerrneennnn. (xV.)

To show that in general « wrench may be resolved in one and
only one way into components on six given screws, or to reduce
any pair of vectors u and A to the forms

6 6
w=bp, A=ZEA, e (xv1)

where the vectors u, ... ug and A, ...\, are given, we assume in
the first place

un=¢An, (n=1,2,3); m=¢hs (n=4%,5,6);...(XVIL)
and writing A+l Ao+t A =Ty, TN FENFHEAg=T, . (XVIIL)
we have w=¢ T+ PaTe, A=T1+ Ty

or 7y =(P;— ) N (u—PA), Ta=(Po— p1) N (u—PA). ..o (XIX.)

Thus the vectors —, and =, are generally determinate and the
scalars t follow from (XviiI).

Ex. 1. The locus of feet of perpendiculars from any point on the
generators of a cylindroid is an ellipse.

[This is evident from the form of the equation (see Ex. 7, p. 64)
T=V (i +tpg)(dy+Ed) ]

Ex. 2. Find the locus of intersection of screws of the three-system
p=¢dA whose axes are coplanar with the origin.

[If p=¢pr=pr+VyA, W=pX'=p'A+Vn\’ the axes intersect in .
Hence (¢ — Vi —p)(¢p — V1 — p’) destroys every vector coplanar with A and
A and in particular it destroys n if S»AX’=0. Eliminating p and p’ from
(¢ —Vy—p)(p—Vy—p)n=0 we have the equation of the locus which may
be written in the form

s _1-0

Vngn
which should be compared with (vIr.).]

Agrt. 103. To give an example of applying quaternions to a
problem in statics, consider the case of a chain lying on a smooth
surface and acted on by any force. Let £ be the force per unit
mass, v the normal reaction per unit length, w the mass of the
chain per unit length, and P the tension of the chain.

For equilibrium of an infinitesimal element at the extremity
of p,

P d(PUdp)+’w.dep+Vpo=0, Svdp=0, ............ (I)

the pull back at p being —PUdp and the pull forward at p+dp
being +PUdp+d(PUdp). When the length of the chain is
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taken as the independent variable (Art. 85, p. 133), this may be

written
P, p"+P'p'+’lUf+y= 0, Sp'p”= 0, Svp'= 0; ........(11)
and in virtue of the conditions it separates into
P.p"+wp " WVp'l+v=0, P'—wS{p'=0, ......... (11L)

remembering that Tp'=1 so that S&p'-1= —S¢p".
In certain cases the second of these equations can be integrated,
and as it may be written

AP —wSgdp=0; P—[{wSfdp=const.=P, ......... (v.)
is the integral in question, P being & constant.
The first equation gives the reaction
T2 =P?Tp"?—2PwSEp” +wT(VER); vovvnnnennn. (v.)
and shows that Pp”+wp -1V '¢ is normal to the surface, or that
Pp'p"+wVp'f is tangential. On elimination of the reaction (Tv),
PVp"Uy+ wp'Sp’ 1€ Oy=0; ceveerririiiennn. (v1)

and the tension into the curvature into the cosine of the angle
between the osculating and tangent planes is equal to the
tangential component of the applied force per unit length which
is at right angles to the tangent to the chain.



CHAPTER XII.
FINITE DISPLACEMENTS.

ART. 104, To transfer a body from one position to another
we may commence by rotating it until lines drawn in it receive
their final directions. A translation without rotation which
brings any point into its final position will complete the trans-
ference. In quaternions* if @ is the vector from a fixed point
to any point in the body, the rotation changes the vectors to
points in the body into q@g~!, and a translation + added to this

gives P=THGTQ™Y i, (9]

for the relation between vectors & drawn to points in the initial
position of the body, and vectors p drawn from the same origin
to the same points in their final position.

This relation may be thrown into many various forms; for
example p=T+q(@—e)g™, T=T4geq ! ..cciiiiii. (1)
shows that if the rotation were made about the extremity of the
vector ¢, the successive translation must be 7; or we may first
suppose a translation (—e) effected, then the rotation about the
origin and then the translation +'.

Successive displacements are compounded according to the

relations, p=T+g ¢ +qEg g (1)
if p=r+qugh p=T'+4pdh
and the order is all important for

p,=THq9Tq +9q'mg g7 (xv)
if p/=7+qDG p=T+ap/07

and this vector p, is not equal to p. Even the rotations are
different unless qq'=q’q, that is unless ¢ and ¢" are coplanar;
and the conditions that the order should be immaterial are

V(Vg). ¢ 1=V (V) .q7Y; 99’ =qq coerrrerens (v.)

* The remarks in Art. 21 should be compared with this.
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Small displacements are commutative in order of application.
This is merely a particular case of a general theorem. Let any
quantity « be changed by one operation into a-+f,(¢) where
f,(a) is small, and into ¢ +f,(a) by another operation, f,(«) being
also small. Then to the second order of small quantities,

a+fi(a)+fya+f(a)= a+fi(w)+f5(«)
=a+fy(«) +f1 (@+fo (@) .. (ve)

The simplest view of a displacement is as a twist about a
serew, that is a rotation about a line coupled with a proportionate
translation along the line. If y is the vector to any point on the
line, and PUVq the translation along the line, we have to
identify

T+qoq t=y+PUVq+q(@—mq ™l oo (VIL)
so that
T=n—qng '+ PUVg=(ng—qn)q '+ LUVq
=2V(4Vq).q 1+ PUVq,

and as it immediately appears that the first vector on the right
is at right angles to V¢, we find on resolving = along and
perpendicular to Vg,
T T
. =V.Vqg. =S} cerreeenns .

2V.4Vq VVq q.q, P=8 Vg’ (VIiL)
and of these the first is the equation of the locus of the extremity
of the vector #, or of the axis of the screw. The ratio of P to
the angle of the rotation, or P:2.q, is the ratio of the pitch (p)
to a whole revolution; and the pitch is therefore

w

-
_p=-L—qS.LT——Vq .......................... (IX.)

ART. 105. Continuing to employ the same notation as in the
last article, let us suppose that q and 7 are functions of a variable
parameter, the time ¢ for example, and we shall have

dp=dr+Ve(p—7)dt where wdi=2Vdgq™',
dp=dr+q(Vim)g~ldt where [dt=2Vg~ldg.........(L)
To prove these relations observe that
dp=dr+dq.mq ' +qw.dg !
=dr+dgqt.quq t—gmq-t.dgg ! .oeiinii (1)

remembering the expression for the differential of the reeiprocal
of a quaternion. This leads at once to the first relation since
PA—=Ap=2V.VpX if p is any quaternion and X\ any vector.
The second relation is proved in quite an analogous manner.
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The vector 7 is the vector from the fixed origin of vectors p to
the variable origin of vectors @, and its derived with respect to
the time is the velocity of that origin. The velocity of the
extremity of the vector p is compounded of this velocity together
with the velocity Vw(p—) which is at right angles to w and to
p—7 and equal to the tensor of w into the perpendicular from
the extremity of p—7 on  (the two vectors » and p—7 being
supposed to have a common origin). In fact the vector w
represents in magnitude and direction the angular velocity of
the body.
Using fluxional notation for the velocities, we may write

p=7'-+Vw(p—T)=wa’1++Vw(p—'r+Vw_l"T—ww), ...(III.)

thus analysing the instantaneous motion of the body into a
rotation round a line coupled with a proportionate velocity of
translation along the line; or, in Sir Robert Ball's phraseology,
we have determined the instantaneous twest-velocity about the
instantaneous screw ; the expressions

n=1—Vo lr+zw, p=Se T ... (1v.)

being the equation of the line or axis of instantaneous motion
and the pitch of the instantaneous screw. (Compare Art. 99.)
When the equation of this axis is referred to the moving

origin we may write it in the form

¢ (p—7)9= =V g lrg+xi=x because w=qq7, ...(V.)
for w=2V4q-1=2Vq(g~9)q '=29(Vq~'9)q '=qg~* by (1)
The line y'= — V.~1¢~14+q+a: being supposed drawn in the body,
the motion of the body brings it into coincidence at the proper
instant with the instantaneous axis at the time 7. Also the
rotation converts . into the angular velocity vector « at the
time . Thus in dealing with the body itself it is convenient to
use the vectors ¢« and @, and in considering the motion of the
body with regard to external objects, the vectors w and p are
preferably employed.

Let us no longer suppose the vector @ to be constant as in (1L).
Then if the vectors p and @ are still connected by the first
equation of the last article, we shall have instead of the first
equation of the present article

p=t+Volp—7)+qoq"Y, p=t+q(Vw+w)g~*; ...(VL)
and more particularly when the vector t is constantly zero,
p=Vop+9q~, p=q@+Vw)q-!, if p=qwq-1;...(ViL)
and still more particularly
w=qiq~! because w=qq"!, Vow=0, Vu=0....(VIIL)
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What we really do here is to compare the velocities of a point
moving arbitrarily with respect to fixed objects and with respect
to the moving body. The vector @ represents the velocity of the
point relatively to the body, while p 1s its velocity relatively to
fixed objects. Sometimes a notation such as

%) o).
ot o’
may be employed—but it is not very explicit—to denote the

variation of p arising from causes independent of the rotation;
and in this notation we may replace (VIIiL) by

=qq~; p=Vep+ where p=qwq!.....(IX.)

. Aw)
=T (X))
which expresses that the rate of change of the angular velocity
is independent of the rotation. We may for example suppose
i, 7 and k to be fixed relatively to the vectors @, and a=gqig~1,
B=qjq 1, y=qkq-! to be unit vectors derived from these by the
rotation. In this case if p=ax+By+yz, the derived p takes
aceount of the variations of o, 8 and y as well as of 2, y and z,

while 22 only refers to the variations of x, 4 and 2z and not at

ot
all to those of a, 8 and y.
These results include the whole theory of fixed and moving
axes, there being now no difficulty in writing down deriveds of
any order. For example, on differentiating (V1) again, we have

p=7+Va(p—7)+ Vo(p—)+9897 + Vugig ™,
and on substituting for p, the general formula of acceleration is
p=7+ Vcb(p -7+ VwVw(p -7+ qfiiq’l +2Vagqogt, .. (XL)

which may of course be expressed in terms of ..
In the case of a rigid body it is frequently convenient to
replace (1IL.) by the relation

=0+ Vop, i (X1L)

where o is the velocity of the point of the body which in-
stantaneously coincides with the fixed origin of vectors p. The
acceleration of the point at the extremity of the vector p is
p=oc+ Voo+ Vep+ VoVop, covirviainnnns (x1r)

which follows on substitution for g in the result of differentiating
(XiL).

As in Art. 102, we represent the twist-velocity of the body by
the symbol (&, w), the fixed origin being taken as base-point, and
we may replace (Iv.) of the present article by

c=(p+Vne; p=Scw~'; n=Veo l+zw...... (x1v.)
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Ex. 1. The instantaneous twist-velocity of a body may be reduced to a
pair of simultaneous angular velocities, 3 and 3, round two lines, by means

of the relations
a=VaB+Vdf3, o=8+8,
where a and «’ are vectors to points on the lines. [Compare Art. 102.]

Ex. 2. If p is the pitch of the instantaneous screw and if o is the angular
velocity of a rigid body, the velocity of any point in the hody satisfies the
relation Spo~l=p;
and vectors drawn from a common origin to represent the simultaneous
velocities of the points of the body terminate on a common plane.

Ex. 3. The locus of points having a velocity of given magnitude is a right.
circular cylinder

Tp=T(c+Vop) or TVe(p—n)=(Tp*~p"Tu)t,
coaxial with the instantaneous axis.
Ex. 4. Determine the acceleration centre of a body moving arbitrarily.

[Interms of ¢ and o, if the acceleration of the point at the extremity of
the vector a is instantaneously zero,

7+ Voo+VewatoVoa=0 or ¢+ Ver+pa=0,
where ¢pp=Vop+wVwp. Hence Yp=—-wSwp-V.0oVee.p+w’Sep and
the third invariant is m=Vww? so that
oVani=(@Su+ V. oVes—w3Be). (0+ Veo).]
Ex. 5. The instantaneous acceleration of a point of a rigid body moving

in any manner is a linear function of the vector to the point from the
acceleration centre, or

p=¢(p—a) where ¢p=Vap+VoVup and a=0.

(a) The locus of points having instantaneous accelerations of given magni-
tude is one of a system of similar and coaxial ellipsoids

T (p— o) =T,
concentric with the acceleration centre, whose linear dimensions are propor-
tional to the acceleration.

(b) The function ¢ is independent of the velocity of translation, and a
change in that velocity merely alters the position of the acceleration centre
and of the associated ellipsoids.

Ex. 6. The locus of points for which the magnitude of the velocity is
momentarily constant is the quadric surface

S(a+Vup)(d+Vap)=0 or S{a+Vo(p—a)d(p—a)=0;

and the locus of points for which the direction of the velocity is momentarily
constant is the twisted cubic

V(o4 Vop)(d+ Voo +Vop+oVwp)=0 or Vii+Va(p—a)d(p—a)=0.
(@) The equation of the twisted cubic may also be written in the form
pVoa?={(6—tw)S(e—tw)+ V. oVes - oBoe}. (6 —te+ Vo)
or (p— a) Vool=tya+ (eSob+ oSwd) - LoSwea,
where ¢ is a variable scalar.
[For the twisted cubic we have ¢p+6+ Vwo=2t(c+ Vuop). Compare Ex. 4.]
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ARrt. 106. If the quaternion on which the rotation depends is a function
of two variable parameters, % and v, we shall write

99 qu+ 94
-1= ' == ~ Uy sesacasesccsnsenns .
2Vdggl=w'dutwedrs, dg Su du+av dety veeiennnn (1)
and it must be observed that o'du+wdv is not a perfect differential. To
determine the relation connecting ' and o, suppose @ to be a constant
vector and p=¢@g1. Then p is a function of « and v, and

0P vy 4 OP_ a Pp_ P
a-Vm gZD’q s a—Vm,qZUq y m—m. ............... (II.)
Calculating the second differentials,
82[3 _ awl —1 ’ —1__ aw/ —1 ’ -1 _— a2p
Soon A% En ¢B¢ '+ Vo' Va gBg 1=V o ¢B¢ 1+ Vo, Vo'qog™'= e

or, rearranging and observing that Vo'VoA—-Ve Vo'A=V. Vo'e,. A, we
have, because @ is an arbitrary vector,

dw’ O ,
au; —,—a%+wal=O. ................................ (111.)

But again, by the last article and in the notation there explained,

do’ ,, 0(@) v, < , . O(w)
fa?—V(ulm + 7 au—Vw w,+~87, .................. (1v.)
and accordingly we may replace (111.) by this new expression
o(w) _9w) i _
W——a—u——me,—O. .............................. (V.)

The results of this article have been employed in Art. 94 in connection
with the theory of surfaces.

ART. 107. In many investigations relating to rotations for-

mulae of the type *
P=vBYaEa B VYTt (L)

present themselves, and it may not be superfluous to make a few
remarks about their reduction. It frequently happens that
a, B and y form a mutually rectangular unit system, and in this
case if §=aa+bB+cy we have

p="7B%y* . aat+y*Bra®B-vy B+ y*Bla By 2. ¢y, . (IL)
when we apply the general relation
o*B=Ra* if Saf=0, Ta=1. .............(IIL)
In order to reduce the coefficient of b3 for instance, it is
generally best to start from the central term, o* in this case,
and to replace it by cos 7@+ a sin 7, and similarly for successive
reductions. Thus we avoid introducing the sines and cosines of
the halves of the angles of rotation.
It is worth while noticing that

daf‘.a“":%dw.a+%da(a1’2“’+a‘1) ............ (1v.)

* 1t may be advisable to refer again to Chap. IV. and its examples.
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ig expressible in terms of the whole angle using the relation
Sa*-l.a*=1(14+K)a* 1. a2
The general relation connecting two quaternions p and ¢ and
two scalars « and y,
(PP~ )Y =P%YP %, i ceeenees (v.)
will often be found useful.

Bx. 1. A planet rotates about its axis y in the period 2m~! and a
satellite describes a circular orbit round the planet in the period 2n~! ; show
that the motion relative to the planet is represented by

p= (,y —mts.ymt)m .y mte.ymt . (.y —mts.ymt)— 'nt’ Sde =0’

the vectors in this expression being all fixed relatively to the planet; and
reduce the equation to
pz.y—7nt8m€8—nt.ymt_

(«) By taking the epoch when the satellite is in the plane of the equator,

the equation may be simplified to

p :r,y—mtBa.ymB . y—ntB—a.ymt’ SB.), =0
where r is the radius of the orbit and where wa is the angle between the
plane of the orbit and the equator.

() The equation may also be written

p=ra(cos wnt sin wimt — cos wa sin vt cos wmi)

+3(cos wnt cos wmt 4 cos wa sin wat sin wmt)

- 4rysinrasin Tt

where a=f3y.
(¢) The condition for a stationary point may be written in the form
mV,yBa,ymB,y —ntB—a + nBa.ymaY—ntB—a . O’
or e+ mVy oy By =0,
and this is equivalent to
n=mCcos Ta, cosant=0.

Ex. 2. Unit vectors o, 8 and y are directed respectively to the point of
upper culmination on the celestial equator, to the east point and to the
north celestial pole, while ¢, / and % are directed to the south point, the east
point and the zenith. Show that the vector directed to a star may be
expressed in the forms

o=y Ry =k Tk
where 7z is the hour-angle west, 7y the declination, ww the azimuth west,
and v the altitude.

(@) If #b is the latitude of the place of observation, show that

k="’
and obtain the quaternion equation
.yz B'Zy.yz = Bba -w B2v—1a'w Bb’
and hence deduce the formulae of transformation from one set of coordinates
to the other.



ART. 107.] ASTRONOMICAL EXAMPLES. 175

Bx. 3. Assuming the effect of refraction to be A times the tangent of
the zenith distance, prove that the vector to the apparent place of a star is
o+ where

e o Vko.o ‘ _ V,Byy‘/c'y“ﬁ“ya .a
= = ~2fQ-y AT L T4 7 z
=K. Sho K‘y B . SBy‘yz/C‘y—zB_ya By‘)/.

(a) Substituting for £ in terms of « and 3 (Ex. 2 (#)), verify the successive
steps of the transformation

BryyB-ta— — Iy -y Y=~ By coswb+ B+ sin b

= —sin b sin my — cos wb cos Ty cos w2+ 3(sin wb cos wy — cos wd sin wy cos wz)

—ycoswhsinwa

(b) Show that the expression for & reduces to the form

o B’ cos b sin 7z -+ y'(sin wb cos my — cos wb sin 7y cos wz)
= . e s
sin 7b sin 7y + cos wb cos Ty cos T2

where 8 and ¥ are unit vectors tangential respectively to the parallel of
declination and to the circle of declination.
(¢) If ¢ is the parallactic angle and { the zenith distance, show that '

_ynq__ 17 VEO
7 =U Vyo'

Ex. 4. An equatorial telescope in imperfect adjustment is directed to a
star, and the circle readings are observed to be (y +#) 7 and (¢+2')w where
¥ and ¢ are small ; if for zero circle readings the direction of the telescope
is a+d, that of the declination axis 3+ 3" and that of the polar axis y+'
where o, ' and y are small vectors perpendicular respectively to «, B
and v, show that

o= (‘)/ + 7’)—<z+z'>(B + B’)—(zfﬂ/‘)(a + a')(B + B/)wz/(y + .y/)z+z' ;
and neglecting small terms of the second order obtain the relation
VAU Ty + (= +y)y B e+ Vimy B+(B¥ 7+ B)Ba=d.
From this and two similar equations corresponding to the results of

setting the telescope on two other known stars, deduce the errors in the
adjustment which are represented by the small vectors o/, B and v'.

T=Ko 1™, UVyo.tand

Ex. 5. The unit of length is taken equal to the focal length of a photo-
graphic telescope in perfect adjustment so that were it not for refraction
the image of a star would remain fixed on the photographic plate. Assuming
the effect of refraction to be K times the tangent of the zenith distance,
show that the image describes on the plate a curve represented by

Vyky*o.o

Sy*xy~e
where 2 is the hour angle reckoned towards the west, and where o, g and «
are three (coplanar) unit vectors fixed relatively to the plate and directed

respectively to the star, to the north celestial pole and, when the telescope
is on the star in the meridian, to the zenith.

O=-K

(a) Prove that this curve represents a conic, or a portion of a conic, and
that it is the intersection of the plane and cone

SBe=0, SyU(cK-o)=5yk,

and consider the arrangement of the curves for various values of X and for
stars of different declinations.
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Ex. 6. The positions of stars are determined by taking transits with a
telescope movable about a fixed axis. Show that the hour-angle rz at the
time of transit and the declination wy are connected with the reading mu of
a circle fixed to the telescope at right angles to the fixed axis %y the
quaternion equation

,yzBQy,yz —_ ,)/cBba—u,B—b.yc'B'.’b'yc'BAbauBb,yc
where b, ¥, ¢ and ¢’ are constants of the instrument, a, 8 and y having the
same signification as in Ex. 2,

(a) If & is a unit vector along the axis round which the telescope turns
the equation may be written in the form

vy =07188ed 1+ a T Ved . 741

and for an almucantar whose line of collimation makes a constant angle (ra)
with the vertical and is in the meridian when =0, the equation is

vy =% cos ra+ B a* B sinwa
where b is the latitude of the place.

Ex. 7. If Uc is the unit vector towards the centre of a planet ; Us+7
the vector towards a marking on the planet in latitude ; y the unit vector
along the planet’s axis of rotation; o the unit vector from the planet’s
centre towards the point on its equator on the meridian through the
marking ; if P is the time of rotation of the planet on its axis and s the
angular semi-diameter at the time of observation, show that

vysinl+ y“”’—la cosl=rs1-Uo(l +1-23‘2)%’
where ¢ is the time of observation measured from some selected epoch.

(a) Denoting the vector on the right by 5, show that % terminates on a
fixed circle and verify that

y cosecl= =V (nym;+ngm+19m) (Snmms) ™
where 7;, 1, and 7, are the values of the vector 5 at three times of
observation.
(¢) Show how to deduce the time of rotation.

Ex. 8. A polar axis having a fixed direction y carries a declination axis
initially parallel to 8 on which is mounted a telescope initially parallel to a.
The vectors being all of unit length and the instrument being completely
out of adjustment so that no conditions of rectangularity are even approx:-
mately satisfied, show that when the direction of the telescope is changed
to o by a rotation round the declination axis followed by a rotation round

the polar axis, o =y ey,
while if the rotation is first made round the polar axis and then round the
declination axis, o =(y* By yey—(yBy V)

and prove the equivalence of these two expressions.

(a) If » and v are the tangents of half the angles of rotation round the
polar axis and the declination axis respectively, show that the vector
equation

a— o' +uVy(at+a)+vVB(a+o)+ur{(a—a)SBy+ V. VyB(at+a’)}=0
serves to determine both % and ».

(b) Deduce from this the scalar quadratic equation in % :

SB(a—a) - 2uSyBo — utBy(a—a)SyB - ulByVyB(ata’)=0.



CHAPTER XIIL
STRAIN.

ART. 108. Homogeneous strain converts vectors (p) in an
unstrained body into vectors (o= ¢p) in the manner described in
the chapter on the linear vector function (Arts. 63, 64), but the
transformation is of less generality. The order of rotation from
¢pa to B3 to ¢y must agree with that from « to B to y in the
case of a physical strain, for otherwise a positive volume would
be converted into a negative volume (Art. 24). In other words
the third invariant of the function ¢ must be positive, or the

condition TS0 oo, (1)

must be satisfied. This requires one latent root of ¢ to be real
and positive, and when the roots are all real this is obviously the
case. When two of the roots are imaginary, ¢’+a/—1g” and
g —~/ =1y’ the third invariant is (9%+9"%g where g is the
remaining latent root; so that here again one root is positive.
It follows from this that n every homogeneous strain one
direction at least remains unchanged, for we have
Ugpa=Ua if pa=ga, ¢>0........... sereenes (1)
If the three latent roots are positive, three lines remain
unrotated. In the case of a pure strain three mutually
rectangular directions remain unchanged, and the function ¢ is
self-conjugate with positive latent roots. The decomposition of
a linear function into a self-conjugate function preceded or
followed by a rotation has been considered in Art. 70; and by

selecting the square root ( ¢>¢’)% of the function ¢¢’ which has all
its latent roots positive we decompose, without ambiguity, an
arbitrary strain into a rotation followed by a pure strain.
A sphere Tp=1 is converted into an ellipsoid—the strain
ellipsord,®
Te-lg=r or Se¢'"l¢p-lo+12=0; ............ (111.)

*The results of Art. 70 show that the surface is ellipsoidal.
J.Q. M
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and the axes of this surface are parallel to the axes of ¢'~1¢~" or
of its inverse ¢¢’ (not ¢'¢). And the ellipsoid

Top=r or Spp'¢pp+r>=0..cccoiiiiiin. ()

is converted into the sphere To=r. The réle of the functions
¢ and ¢'¢ is quite analogous to that of the functions of
Art. 101, p. 161, denoted by the same symbols.

ART. 109. A shear is represented by the function

¢p=p—PBSap where Saf=0, .....cccceeenrnen. (1)

for a point in the body is displaced parallel to a fixed direction
(UR) through a distance proportional to its distance from a plane
(Sap=0) parallel to the fixed direction (UB). In all cases the
displacement of a point—the extremity of the vector p—is ¢p—p.
A shear accompanied by a uniform dilatation is represented by

¢p=gp—,8Sap, Sa,3=0, .................... (II.)
the ratio of the changed volume to the original being that of g°
to unity.

The function ¢p=gqpg~t—qBq *Sap, SaB=0, ....ccc...... (111)

represents a dilatation and a shear followed by a rotation, and
this function involves eight constants—three in Ug, one in g,
three in oT3 and one in UB (because Sa3=0)—just one less
than in the general function.

Omitting the condition Sa8=0 in (11L.), the function involves
nine constants, and the function

Pp=99p9 1 —aBq "Sap «c.ocoiiiiiiinii, (v)
is capable of representing the most general strain which may be
produced by shifting in a fixed direction (UB) planes parallel to
a fized plane (Sap=0) by an amount (—g~'B5ap) proportional
to the perpendicular distance from the fized plane; by altering
all limes in the ratio g to unity, and by superposing « rotation.
To prove this we identify ,

P'pp=(9—aSB)(g—PBSa)p :

=92p—aS(g,3—%B2a)p—(g,B—%,BZa)Sap ............ (V.)
with Hamilton’s cyclic form (Art. 77) for the general self-
conjugate ellipsoidal function so that the third invariant of ¢ may
be positive or that PHg—SaB) >0 e (vi)
in other words we suppose ¢ to be a given function, and it is
required to determine @, 8, g and g. If a2, b2, ¢ are the latent
roots of the general self-conjugate function

¢’ pp=b2p+ASup+uSAp, «ceeiiiiniiiiiiin (viL)
2 =02+ =202, 2Tau=a?—c?
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(compare Art. 77 (11.) and Ex. 2), we have on comparison with (v.)
| g=b, a= =X\, bB=u+4iTH ...con..uu.. (viL)

whence substituting from (vir) in dTB8="T(u+3\TB2), we find
the quadratic in T(32,

TATB—2(a?+ ) TATRE 4 (a2 — 22 =0, ..... wo(IX)
whose roots are TA?TS2=(a+c¢). These giv'e ‘
bB=p—ir"t(ate),

and it follows from (vL) that we must select the negative sign.
Thus we have definitely by (vir)

g=b, a=—=\, bB=p—~IA"Ya—c); .con........ (x.)

and the rotation may be determined as in Art. 70. A second
solution is obtained by interchanging A and .

Ex. 1. Prove that the necessary and sufficient conditions that the
function ¢ should represent a uniform dilatation and a dilatation accompany-
ing a shear, are respectively

<i>—g=0, (d)"g)?:O'

[These are excellent examples of the degradation of the symbolic cubie,
Art. 66, p. 95.]

Ex. 2. If the function ¢ represents a uniform dilatation and two super-
posed shears, 3
m'm3=m'.

[Assuming ¢p=g(1 - B'8a')(1 - BSa)p, Baf=Sa'F'=0, it is necessary to
prove that g is a root of ¢, and that it is equal to the cube root of m. It
may be shown that the converse is also true.]

. Bx. 3. 'The strain produced by two successive pure strains is generally
impure.

[Two functions are commutative in order of operation only if they are
coaxial (Art. 66, Ex. 2, p. 95).]

ART. 110. Lines in the unstrained body whose lengths are

altered in a given ratio g are parallel to edges of the quadric cone

TeUp=g, or SUp(¢'¢p—9)Up=0 ...cc0ee....... (r)

—one of a concyeclic system ; and by (VIL) thig equation may be
replaced by

2SAUpSulUp=5b2—g% or sinwusinv=(b2—g2)(a%—c?)"L, ...(IL)

where u and v are the angles a line makes with the cyelic planes
of the fuuction ¢'¢p. The ratio g for any direction is the
reciprocal of the parallel radius of the quadric (compare Art.

108 (1v.)), Tgp=1 wccoreeirrrirniieneraannn. (11L.)
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If the inclination of the vector B to a remains unchanged, the
condition

SU.aB8=SU. qbatﬁ,@, or Saf3. T¢a¢,8=Sa¢'¢,8 .TaB...(1v.)

is satisfied, and the locus of the vectors 8 is the quartic cone

SaB2Sa¢’ paSB¢'pB=Sap'¢B% . a’B% ...oeene. (v.)
which has « and Vag'¢a for double edges. Substituting a+tar
for B in this equation, we get for the edges in the plane Sxp=0,
which passes through g,

B=VA(¢ pata(SA YN, oo, (Vi)

after discarding the factor 2 These edges are real for all
directions of the vector A, and it easily appears that the upper
sign corresponds to SU . a8= 48U . pa¢B, while the lower sign
corresponds to SU.aB=—SU. ¢agp@ on comparing the signs
of SaB and SB¢'pa. The lower sign corresponds to the case in
which the angle between ¢a and ¢3 is the supplement of that
between q and B. The vector Vag¢'pa alone remains at right
angles to @, and (Art. 75 (1v.)) this vector is parallel to the
second principal axis of the section of (111.) of which a is a
principal axis.

If an arbitrary rotation is superposed on the strain, the cone (1v.) is the
locus of lines which together with a can be unrotated lines—or axes of
q(¢p)%‘1. The latent root corresponding to any edge (B) is (compare (1.))
+T¢pURB. To determine the rotation which must be superposed on the
strain so as to leave unrotated two vectors a and 3 satisfying the condition
(1v.) we may utilize Ex. 6, Chapter III, p. 26, and find the rotation which
converts Uda and UpB into + Ua and + UQB, having as in (vL) due regard
to the indeterminate sign. It is possible to superpose a rotation on a strain
so that all the lines in a plane may be unrotated. It is only necessary to
reduce the function ¢ to the form given in Art. 109 (1v.), and we have

gL PP g=gp—B8ap, cveriieaiiireii (vin)
and the lines in the plane Sap=0 (or SAp=0, compare Art. 109 (x.))—a
cyclic plane of ¢'¢p—are unrotated.

ART. 111. The displacement at the extremity of the vector p

produced by the strain is

d=a—p=(p—1)p=p(Sp~'¢p—1)+pVp~'gp, ...... (1)
which we have resolved along and at right angles to the vector p.
When unity is a latent root of the function ¢, the displacement
is parallel to a fixed plane—that of the axes of ¢ complementary
to the unstrained and unrotated axis corresponding to the root
unity. (See Art. 66 (x.), p. 94.)

In general, provided the greatest and least roots of ¢'¢ are
greater and less than unity, it is possible by the last article
to superpose a rotation on the strain so that the resulting dis-
placement may be everywhere parallel to a fixed plane.
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The quantity e=Sp M p—1)p.oviriiiiiniiinin, (1)

is called the elongation, and it is numerically equal to the
reciprocal of the square of the radius of the elongation quadric

Sp(gpo—Dp==1, (¢go=3(p+¢)), cvvvvvvvree (1iL)

which is parallel to the vector p. This quadric may be an
ellipsoid or a hyperboloid according to the relative magnitudes of
the roots of ¢, and unity.

The component of the displacement perpendicular to p may be
written in the form

Vyp=Veppt.p=Vep+Voppt.p.ceviiinin. (1v.)

where ¢ is the spin-vector of ¢, and (Art. 75 (1v.)) the vector
Vepopp ! is parallel to the second principal axis of the section of
(111.) of which p is a principal axis. The magnitude of this
vector (TVp-Y¢p,—1)p) is numerically equal to the area of the
triangle formed by lines drawn along Up and along the eentral
perpendicular on the corresponding tangent plane of the elonga-
tion quadric—the lengths of these lines being the reciprocals of
those of the central radius and the central perpendicular.

ART. 112. When the strain is not homogeneous, if the point P
is strained to Q, the relation between the vectors p(=0P) and
a(=0Q) ceases to be linear, but we always have the correspond-
ing differentials linearly related, or

do=g¢dp if a=0(p), ..ccooeviivriininn.. (1)

0 being any function of p, and ¢dp being a linear function of dp
involving the vector p in its constitution. So long then as we
confine our attention to the limits of vanishing and corresponding
regions at Q and P, so that the vector p does not vary, the
treatment of this general case is precisely the same as in the
case of homogeneous strain.

In terms of the operator v,

do=—SdpV .o, cooviiiiiiiiiiin, (11.)
so that if « is any vector which is not subject to the operation of V,
pa=—8aV .o, and ¢'a=—VSar, ....ceeeuen (1L)

as we may verify in many ways* by the results of Arts. 56
and 57; and in the same way it is not hard to see that we
may write

;(¢—¢’)a=v VVo.a, VVoe=2¢, .ccecvvvnnnnn. (IV.)

* For example pa= +ZSaVur. %% S ¢la= ZV/.wSa%of : Shur.
u
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where ¢ is the spin-vector of a. Thus for a pure strain at all
points, we must have
VVo=0, or o=VP ..o, (v.)

(Art. 56) where P is a scalar function of p. (See p. 74.)

Art. 113. For small strains it is convenient to change the
notation and to consider the displacement of a point produced
by the strain rather than the relation between the vectors to the
strained and unstrained positions of the point. We write there-
fore for a homogeneous small strain

F=pF PP, evrririnririiiin (L)
replacing the function ¢ of earlier articles by 14¢, the
funetion ¢ being now small, or T¢p being small in comparison
with Tp. Apart from its smallness, however, the new funection
is of a more general character than the old. ~We may for
example have the order of rotation from ¢a to ¢3 to ¢y different
from that from « to 8 to vy without violating the physical reality
of the strain. In fact the ratio of volumes is now

. S(at+¢a)(B+9B)(y+¢y) _SaBy+ZS¢aBy _; . v
lim. SuBy = SaBy =14+m’, ..(IL)
and m” is small in comparison with unity.

Small strains are superposable (cf. Art. 104 (v1.), p. 169), or
(LT+ o)+ p=(1+ ¢+ ¢5)p=(1+¢)(1+¢1)p, ...(1IL)

because we agree to neglect the terms of the second order ¢,¢,p
and ¢y, p.

A small strain is resolvable into a pure strain and a small
rotation by the relation
ptop=ptop+Vep=(1+Ve)(1+¢p)p=(+¢)(1+Ve)p (V.)
where ¢ is the self-conjugate part of ¢ and where ¢ is its spin-

vector.
We may write

p+Vep=(1+1e)p(l+ie) t=p+iep—ipe ......... (v.)
The strain quadric now becomes
a?—28c¢o+12=0 .oiiiii, (vL)

if p2+72=0; for p=(1—¢)o if o=(1+¢)p, since approximately
o=(1—g¢)p=(1-¢)c.

For non-homogeneous small strains, suppose 6(p) to be the
displacement of the extremity of the vector p. Equation (1.) then

becomes e=pF0(p) ceerririiiiiii, (vir)
and for a neighbouring point
do=dp+¢dp=dp—SdpV .0p. ....c.cceueriis (vIIL)
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Confining the attention to points in the neighbourhood of the
extremity of p, equation (VIIL) is of the same form as (1), and
the results of the present article apply if we regard the function
¢ already employed as having the meaning assigned to the same
symbol in (viIL), and if we suppose that the vectors p throughout
the article are small and equivalent to the vectors dp of (viIL).
(See Art. 124, p. 211.)

Ex. 1. Interpret Hamilton’s focal and cyclic transformations of a self-
conjugate function,

Ppp=aaVap+bBSHEp=gp+ ASpp+uSip,
where ¢p represents the displacement due to a small pure strain.

[The terms may be taken separately. «aVap representsa shrinkage or an
expansion to or from one line (a) ; b3SBp represents an elongation parallel
to another. See Minchin, Treatise on Statics, Art. 379.]



CHAPTER XIV.
DYNAMICS OF A PARTICLE.

ART. 114. The rate of change of the momentum of a particle
is equal to the applied force, or

d
T SMP=MP=E tiiiiiiiiiin (1)

where m is the mass; p the velocity, mp the momentum and ¢
the applied force.
The moment of momentum of the particle ahout any point A is

Vip—a)mp=mV(p—a)p; .cevverrumnnnnn. (11.)

.and if A is a fixed point the rate of change of moment of
momentum is equal to the moment of the applied force, for

d
d~t”mV(p—a)p=7’nV(p-—a)ﬁ=V(p-—a)f, ......... (111.)
since Vpp=0. If the point A is in motion with velocity &, the
rate of change of moment of momentum is
mV(p—a)p—mVap=V(p—a)f—mVdp, ......... ()

and in this case it depends on the velocity of the point A and on
that of the particle P, unless indeed the motion of A is constantly
parallel to that of P.

Sinece aqt ImTpi= -mSpp= —Spf= —(%j‘Sfdp, ......... (v)
the energy equation is
pmTp+ j Sedp=const. =E, eveveoveereen.. (v1)

and for a conservative system of forces (Art. 56 (VIL), p. 74),

jsgdp 2P, = —VP: e (vIL)
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Ex. 1. 1If the applied force is parallel to a fixed plane SAp=0, deduce
the integral SAp=at+5b; and if it is parallel to a fixed line (p), show that
Vup=at+ 3 where a, b, o and 3 are constants of integration. .

Ex. 2. If the force is directed to a fixed centre-—the origin of vectors p—
show that
mVpp=B=a constant vector.

Ex. 3. If 7 is the tangential and & the normal component of the force
and v the velocity in any orbit, prove that if C'is the curvature of the orbit,
0=, 3=1.

[Letting accents denote deriveds of p with respect to the arc, we have
p=pv, p=pi+pd since v=4 Also Tp’=C and E=pT+Up’N. See
Art. 117.]

Art. 115. The equation of motion of a particle of unit mass
attracted to any number of fixed centres with forces varying as
the distance is

=20 (ay—p) =20ty — Py, crerininininnnnn. ()
the attraction to any centre being proportional to the distance
T(a,—p) and acting along U(a;—p) towards the centre. The
scalars «,, o, etc., define the ratio of the magnitude of the
attraction of the centres to the distance, and they are positive
for attractive and negative for repulsive forces.

If o is the vector to the mean centre of the centres for the
multiples a;, ay, ... ¢y, and if « is the sum of the multiples, the
equation takes the form

p=ala—p), (@=2a;, 0a=201d;); cerereeienn. (1)
and the particle moves as if attracted to the mean centre.

The more general equation
F+2bp+cp=0, oo (1)

where b and ¢ are scalar constants, is that of the motion of a

particle acted on by a force (—cp) due to a centre at the origin

attracting or repelling (¢>0 or <0) proportionally to the

distance, and also acted on by a force (—2bp) proportional to the

velocity and accelerating or retarding according as b<C0 or >0.
To integrate this equation, we assume

p= ‘yle"" + y28"2t B <] 7 TR (Iv.)

where 1y, y,, etc., are constant vectors and a,, n,, etc., constant
scalars, and we express that the result of substituting for p in
(ur) is identically satisfied for all values of £. Equating to zero
the coeflicients of €™, ete., after substitution, we find

(P26 AC)=0 erririrrerrianienis (v.)

. where y and = stand for any one of the vectors v, and the
corresponding scalar m,. These conditions require all but two
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of the vectors to vanish. The remaining two v, and 7, are
indeterminate, and the corresponding values of » are the roots of
the coefficient of y in (v.) and are

ny=—=b+p, ny=—-b—p, if p?=b—c;

ny=—b+a/=1q, n,=—b—a/—1q, if ¢?=c—b%; ...(VL)
and the corresponding solution of the equation is

p=e (v +y,e™) or p=e""($ cosqt+3,sin gt), ...(VIL)
the vectors y, and v, (or §; and §,) being arbitrary constants of

integration.

In the more general case, to solve the equation

Bt dop=0, ccoviiriiiiiiiiiiiii (viIL)

where ¢, and ¢, are two constant linear vector functions, and which
represents a damped motion of a particle such as might be supposed to take
place in a crystalline medium, an assumption of the form (1v.) gives

WY+ Py + Py =0y i, (1x.)

so that the function ¢,+n¢p, +n2 has a zero root and vy is the corresponding
axis. The third invariant of the function must vanish if it has a zero root,
“and the appropriate values of the scalars n are the roots of the equation

S+ 1, + 1) Mo+ n; + 0¥ pdy+ 2, + 0B v =0, «cnue.e.. (x.)

where A, ppand v are any vectors. Solving this equation we determine six
linear functions with zero latent roots, and the corresponding axes (y,, v,, ete.),
being determined, the solution is

P=Z0918" i (xr.)

the arbitrary constants being the tensors of the vectors y.

Ex. 1. Show how to determine the constants of integration.

[We may have given the initial position and the initial velocity—six
constants. For example the solution of (11.) is p=a+7; cos N/ at+7y,sin Nat,
and if p=f and p=7 when ¢=0, we have y,=f—qa, yNa=y.]

ART. 116. For a force directed to a fixed eentre, the origin of

vectors p, p=& Uf=4TUp, corerviiieeeiirrneannn (1)
and (Art. 114 (111.)) we deduce at once the integral of moment
of momentum Vep=8, «ooviiiiiniiiniiiiini, (1)

where the constant B is double the vector area swept out by the
radius vector in unit time. Conversely if the vector moment of
momentum with respect to any fixed point is constant, that point
is a centre to which the force acting on the particle is directed,
for B=0=Vpj or s||£llp. The orbit of the particle lies in the

plane SPB=0. teveerrieiiiieieiriennen (111.)
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In general the vector 3 admits of transformations such as the
following (compare Art. 85 (IL), p. 132):
5 dUp 1 .
B=Tp?. V§=T”2‘”dt_P' I.—J;)=Tp2 co=Tp?. UB.w, ...(IV.)
where w is the angular velocity of the radius vector, and where w
(for a plane orbit) is the angle the radius vector makes with some
prime vector or more generally where 4 is the scalar angular
velocity. We may also write

BUp_dUp  Up _ 5, dUp
Tpe = dt’ or sz—,(-} cTqp e )
so that for a central force
T
p= —mB‘I%B, if f= —mUpr‘Z. ............... (vi)

In particular when the law of force is that of the inverse
square, the scalar m is constant, and (V1) integrates at once
and gives

p=—mB Wp+vy where SBy=0 by (IL), ....... (vIL)

v being a vector constant of integration. This shows that the
hodograph of the motion is a circle whose centre is the extremity
of the vector y and whose radius is mTS3-1

Moreover, substituting for g in (iL), we find the equation of

the orbit, B =BT otV py; cereeesersreeeen. (vir)
which is equivalent to the two equations
’mTp=T182—-S,8‘yp, SIBp=0; ................. (IX)

and which represents a conic referred to a focus as origin. If w
is the angle the radius makes with the vector yB we may
replace (1X.) by

To(l4eccosw)=p where e=m 'TyB, p=m T ...(X.)

and ¢ is the excentricity and p the semi-latus-rectum.
Taking the tensor of (viL), utilizing (1X.) and observing that
by (x.) Ty2=me?p-1, we obtain the energy equation
5 2m

Tp*= Tp T s (X1.)
where a =p(1 —¢?)"1 is the mean distance.
Now when we resolve the velocity along and perpendicular
to p,
p=p BSpp+p WVpp=Upr+p-18 if r=Tp;..... (x11.)
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whence on substitution in (X1.) we find

which gives on integration the radius vector in terms of the
time.

Ex. 1. Deduce the usual » and 6 equations for a central orbit by
26
expressing p in the form rk=3.

. 20 . N
[Heve p=(+rbk)kvs, B=120k=hk, §=hu?, #=r'§= —hy where accents
denote ditferentiation with respect to § and where «=+"'. Thus

i 26
p=—h(w —uk)kmi, p=—h%P(u" +u)k7i]

Ex. 2. If a, 3 and y are three unit vectors, « along the radius vector,
v perpendicular to the plane of the instantaneous orbit and B=ya ; if ¢ is
the rate of description of angles by the radius vector in the orbit and if &
is the rate at which the plane of the orbit turns round the radius vector,
prove that the equation of motion is

a(F —ré®) + B(2ré+1E) +yrac=¢.

[Here Z=V9=yé, Z:V,%ﬁ:ad, so that a=f0¢ J=-B¢ and
B=yd —a¢. Compare Art. 86. By the instantaneous orbit is meant the orbit
which a planet would describe round the sun if the disturbing forces were
suddenly removed. The equation exhibits the effect of the components of

the force along and perpendicular to the radius vector and perpendicular to
the plane of the orbit.]

Ex. 3. Express the equation of motion in a perturbed orbit in terms of
the reciprocal of the radius vector (u), the rate of description of areas (k)
and the rate (@) at which the orbit_turns round the radius vector per unit
description of angle in the orbit ; and show that it is
" XX &

(' +u)a+ e /),'B—uay__/?'zf-"

[We have to express everything in terms of A=TVpp=7%, of u and of
and their differentials with respect to the angle c. Writing thus

p=aul we have p=~hu?. éaE (auY)y=hu*(Bu™! — an'u?), ete.]
Ex. 4. Express the equation of motion of a particle in the form
" H H S < (R &

a(w’ +u)+ au —H—BuTI—y(us ~su")—y Tj(us —su)= ~

where u is the reciprocal of the projection of the radius vector on a fixed
plane, « is a unit vector along this projection, y is the unit normal to the
plane, B=+ya, H is the rate of description of the projection of areas, s is the
tangent of the angle between the radius vector and the projection, and
the independent variable is the angle in the fixed plane.

[Here p=(a+sy)u™, da~l=y, y'=0, 3'=—0a, Hu?=¢if ¢ is the angle in
the plane. The scalar equations to which the above is equivalent have been
much used in the lunar theory.]
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Ex. 5. Prove that the vector curvatures of an orbit and its hodograph
are
dUdp_ € 1 dUdp_y ¢ 1
do — "pTp dp ETTH
and that for a central orbit they reduce to

dUdp BTé dudp B
dp TpTp¥ dp _TSTpZ

where B=Vpp.
(a) Hence the law of nature is the only law for which the hodograph is a
cirele for all initial conditions.

ART. 117. The equation of motion of a particle constrained
to move along a curve or on a surface is

P=EFV i (L)

where y is the reaction arising from the constraint. If there is no
friction, the reaction is at right angles to the direction of motion
or the vector v lies in the normal plane of the constraining. curve
or is the normal to the constraining surface. The condition

Syp=0, cvriiiiiiiii (1L)

which is then satisfied, allows us to retain the equations (v.)
and (VL) of Art. 114.
In terms of the deriveds with respect to the arc s of the orbit

which we now denote by p’, p’, ete., we have (compare Art. 85,

Ex. 1, p. 133),
p=pv, p=pV0+p0, v=$ V=00, ... (111.)
or in the notation of Art. 86, p. 134,
p=av, p=Bc124at i, @v.)
where v is the velocity ; and the equation of motion is
p"’b‘2 + p'?} = f—{- Vi evresencrenenioossncannnne (V)

In the case of a constraining curve, the motion must be deter-
mined from the energy equation which is alone available for
this purpose. For a surface we have, on elimination of the
unknown tensor of »,

V(i—8v=0, oo, (vL)

and in this equation v is proportional to a known function of p
—the result of operating by V on the scalar equation of the
constraining surface. (Art. 54, p. 69.)

If on the other hand we seek the reaction arising from the
curve or surface, we have by (11.)

v= p'_ 1Vp'v = p”i)2 - p'” 1Vp’f= - 2p”j.Sfdp - p'_ 1Vp'f, . .(VIL)

the energy equation being employed in the last transformation.
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For a rough constraint, the equation of motion may be written in the
form
p=p 0t +p ' =€+v-npTy, SPV=0, .cceverrerrrns (viL)

where # is the coefficient of friction.
Resolving along and at right angles to p’ this equation gives

w+8pé=—nTy, v=p"22—p"Vp€; ..iviinn. (1x.)
whence on elimination of Tv,
P —p V= -Uv.a (00 +8p'8) ; vveviereenn. (x.)
or again in terms of the vectors p and p, we have
2Vp(—E)=T (o). Sp(F— &), weevrereireverreeennnn, (x1.)

because Sp(p—£)=nT(pv) and UVp(i—E)=U(pr). Equation (x.) or (xL.)
may be employed for a constraining surface. In the case of a curve we
must take the tensor of each side to eliminate the unknown Uv. We may
remark that it follows from (1x.) that if the curve is a geodesic on the

constraining surface V. vp~IVp'£=0 or

SPOE=0, ceiiiiiiiiirieiee s (x11.)

because (Art. 90) for a geodesic p” || v. In other words, when the direction
of the applied force is coplanar with the normal to the surface and the
tangent to the orbit, the curve is a geodesic on the surface, and in particular
this is the case when there is no applied force.

If the constraining curve or surface is in motion so that, Art. 104,
p. 168, the vector p to the particle from a fixed point is connected with
the vector @ to the particle from a point moving with the constraint by the
equation

in which 7 and ¢ are supposed to be given functions of ¢, the equation of
motion takes the form (compare Art. 105, p. 171)

P @2V + VT +ViVim) g =£4+v, o, (x1v.)

and for a smooth constraint,
SeWg =0, coiiiiriiniiiiiiii (xv.)

¢®@q~! being the velocity with which the particle moves along the curve or
surface of the constraint.

Ex. 1. A particle moves under gravity on a surface of revolution having
its axis vertical.

[If % is the unit vector directed vertically downwards, the equation of
motion is V(p—gk)v=0. Since the surface 1s of revolution, the vectors v,
k and p are coplanar, or Spkv=0, so that Vip|| Viv | Vvp. Operating on
the equation of motion by Sk or Sp we find the integrable relation Skpp=0,
so that Skpp= —% where 4 is the constant rate of description of area by
the projection of p on the horizontal plane. We have also Svp=0 and
Skp= —% if we write Skp= —~z From these three equations pSVipViv
= —AVEkv—2VvVip; and if the equation of the surface is given in the form
Tp=f(z)=f(—~Skp) we may put v=Up—Lf'(z) and Vip=Vivf(z). Hence
pPVEkpt=h?—2?Tp?; and by Art. 114 (vi) on expressing everything in
terms of z we obtain the equation

o (P 2aff 4P =2 B ga) (P -2) - I,
If the surface is spherical f(2) is constant and equal to the radius of the
sphere, so that f’ is zero.
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Again if w is the angle the plane of p and £ makes with some initial plane,
h=wTVkp2=10(f?- 2%

. dw . ., .
or $~(f —2)=h,

from which » can be found in terms of z by the previous equation.

If, on the other hand, the equation of the surface is given in the form
Skp=7#(Tp), it may be more convenient to obtain an equation in r(=Tp)
and by using Spp+7+=0 instead of Skp+z=0; and if the equation is of
the form Skp=f(TVkp)=7(p) we may use SVkpoVkp+pp=0.]

Bx. 2. A particle slides under gravity within a fine smooth tube which
revolves round a vertical axis.

[The origin being taken on the axis, the vector to the particle is p=¢@g~"
(compare p. 168), and if 7 is the angle through which the tube has been
rotated from some initial position,

p=q@+2aVEw) g™, p=q(@E+2aViT+2%VEiT +aViT)g™;
while the equation of motion is p=gk+v where Svgz5g—'=0. Because the
axis of ¢ is parallel to £, we find on elimination of the reaction v,
Sey (&5 + 22k ViD + 5 VD) =gSok ;
and in this equation 7 and % are given functions of ¢ when the law of rotation
is known, and % is a known function of a parameter variable with the time
when the form of the tube is known. If the velocity of rotation is uniform,
the equation integrates and
&+ Vet =gSkey +1C.

If for example the curve is a helix with its axis vertical so that
W =a(i cos w47 sin w)+ bku we have 772= —(a?+b%)? and Vio?= -a? and
the equation is w*(a®+ b2)+n%a2=2gbu— C'; and if the curve is a vertical
circle, @=a(icosu+ksinu) we have

wa?+n2a? cos?u=2¢gasinu— C.]

Ex. 3. A particle under gravity traverses with uniform velocity a

smooth curve which rotates uniformly round a vertical axis. Prove that

the curve lies on a paraboloid of revolution.
[The equation of the surface on which the curve must lie is

APTVET? + 295405 = const. ]
Ex. 4. Two particles of masses m and m’, connected by an inextensible
string which remains stretched throughout the motion, are projected from

the extremities of the vectors a and «” with the velocities 8 and 3’; prove
that the vector to the particle m during the motion is p where

p(m+m)y=m(a+ Bt)+m'(a’+ B1)
+m' T(a—a'). (U(a—a’)cosnt+U(B - [)sin nt),
the scalar n being defined by
aT(a—a)=T(B- ).

Bx. 5. If a particle can be made by suitable initial conditions to describe
a given curve under the action of a force £, show that

2p"[Sgdp - pVp§=0,
p' and p” being the first and second deriveds with respect to the arc and a
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suitable constant being included in the integral which is taken along the
curve.
(a) Hence deduce M. Bonnet’s theorem.

[We have m(p"? + p'vv’)=§ which gives mvv' = —Sfp’ and mo?= —QJ‘SSdp,
ete. Conversely if the condition is satisfied it follows that a particie will for

suitable initial conditions describe the curve. If £, &, etc., are forces under
which, acting separately, a particle can describe the curve, and if for greater

clearness we replace ISSndp by CM+JS$,,dp (the new integral being taken
[}

from any selected point on the curve), we have
220" (C+ [8€.dp) —Sp'Vplut = 20" (SCu+ [8. 36, dp— p'Vp'3E,) ;
[ [

or a particle will describe the curve freely under the action of the resultant
of the forces provided its mass m and the velocity v satisfy me?=3Zm,v,?
initially.]

Ex. 6. Show that the condition of the last example is equivalent to the

conditions o dg . ,
Spp'E=0, .8p"6+28p6=0,

which assert that the force must be in the osculating plane of the curve, and
that the rate of change (as we pass along the curve) of the product of the
radius of curvature into the normal component of the force is equal to double
the tangential component.

Anpt. 118. Tait has applied the calculus of variations in the
following manner in the determination of the curves of quickest
descent, or the brachistochrones, for a conservative system of
forces. (Quaternions, Arts. 518 and 523.)

If the integral 4 =jQ . po=JQ. ds oo (1)

is taken along a curve, @ being a given scalar function of p, the
variation of the integral corresponding to a variation of the
curve is

04 =j8Q . po—}-J.Q . 3po= —[Sapv .Q. po—jQSUdp . Sdp.

The symbols d and ¢ are commutative in order of operation,
so that on integrating by parts

jQSUdp 8dp= j QSUdp.dép=[QSUdp. 6p] — j S8pd(QUdp)

where the term in square brackets corresponds to the variation
of the limits of the integral. Thus -

$4.= ~[@SUdp . 6p]-+ [S3p (A(QUAL) - ¥Q. Tdp}. ...(11)

If the integral is stationary, the variation vanishes and the
term under the sign of integration in (11.) must be zero for all
vectors dp. And since dp may have any direction when the
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curve is not restricted in any manner except at the limits, we
must have

d(QUdp)~VQ.Tdp=0, or (%(Qp’)—VQ:O. eee(1IL)

If on the other hand the curve is constrained to lie on a
surface so that Sydp=0 where v is normal to the surface, the

dition i
concmon s V(£ @) =Q)=0. oo (v))

For the brachistochrone the integral 4 is the time of descrip-
tion of the curve or

4 =t=jv'1. ds, Q=Tp 1=(2E—2P)} ......(v)

by Art. 114 (vL), so that VQ=VP.@*=VP.Ts-3% The first
equation (IIL) now becomes

d(Tp t.Udp)—VP.Tp2.dt=0 or d.p '+VP.Tp"2dt=0,
or finally BHp VP . =0, ccoci i, (VL)

Tait remarks “It is very instructive to compare this equation
with that of the free path (54 VP=0); noting how the force
—VP is, as it were, reflected on the tangent of the path.”

Ex. Determine the brachistochrone when gravity is the only force.

[Here VP= —«, a constant vector, and the equation dp~!—«Tp~2d¢=0
shows that p~l=a+«f(¢) where o is a constant vector which may without
loss of generality be supposed to be perpendicular to k. Substitution gives
df - (Ta?+T«%?)d¢=0, and the solution of this is

F=T.xatan Tak(t ~,)=T .k Latan n(t—ty)

where n=T.ax. Thus
pl= —Ta(Ua+ Uk tann(t—1,))

and p=Ta 1. cos?n(t—t,)(Ua+ Uk tan n(t — 1)),
and on integration

p=B-}n"1Ta [Ua{2n(t—t))+sin2n(t—15)} — Uk cos 2n(t—¢,)]
which represents a cycloid. (Tait's Quaternions, Art. 524.)} '

1.Q. N



CHAPTER XV.
DYNAMICS.

Arr. 119. Let m,, m,, etc., be the masses of particles of any
dynamical system which are situated at the extremities of the
vectors p,, py etc., drawn from a fixed origin. By Newton’s
second law the equation of motion of the particle m, is

myp =&+ et Estete, (1)

where £, is the force external to the system which acts on i,
and where £, is the force due to the interaction of m, on m,, etc.
By Newton’s third law action and reaction are equal and

opposite, or
ot En=0, Vp &t Vp&p=0,.coiniiiiiii. ()

these being the conditions that &, and ¢, should equilibrate.
Hence by adding equations such as (1) for all the particles, and
by adding the results of operating on these equations by Vp,,
Vp,, ete., we obtain the equations

Smyp, =2, Em Ve, =2Vp £, i (11r.)

which are independent of the interactions of the particles.
Attending to (1r) the rate of change of kinetic energy of the
system of particles is evidently

d
@ $3Im,Tp2= —Zm,Spp = — ZSp,6,— ES (b — ) 100 ---(IV)

and because (IL) implies &, || p,—p, We see that this is inde-
pendent of the interactions provided the relative velocity of
every pair of particles is at right angles to the line joining
them—or in other words, provided the distance between every
pair of particles remains unchanged.

Writing

M=3m,, Mp=3mp, {=32¢, n=2Vp&, 0=2m;Vp,p,,(V.).
so that M is the total mass of the system, p the vector to the
centre of mass, £ the resultant external force, » the resultant
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moment of the external forces with respect to the origin as base
point and 6 the resultant moment of momentum with respect to
the origin, the equations (111.) become
Mp=§ O=n.ccceviviuniiiiiinn... (vi)

When the external forces are zero, £ and 5 vanish and the
integrals of (vL) are

Mp=at+B, =17y, ccocceviiiiiiiiinns (vIL)
where a, 3 and y are constant vectors; and when the internal
forces are given functions of the distances between the particles,
we have also in this case the integral of energy

$2m,Tp,*=Zf . T(p,— p,) where £,,=U(p,— p,)f". T(p; = py)- (VIIL)

Art. 120. With reference to a point moving in any arbitrary
manner, the extremity of the vector ¢, the moment of momentum is

O.=2Zm,V(p,—e)(p,—&)=0—MV (pi+ep—eé); ....... (L)
and (vL), Art. 119, may be replaced by
Mp=£ B.=n5—=MV(p—€)é,urrerrrreerunn... (1)

where 5,=#n— Vef is the resultant moment of the forces about the
extremity of e. In particular when ¢ terminates at the centre of
mass, the equations are

ME=§ Qy=1p ooeevrrrerrenansirnn, (11L.)

where 6, and », refer to the centre of mass. These equations are
of the same form as those of the last article. We may note that
in general

0, =0~MVpp=0.—MVppe..ce0vvvvurenn... @av.)

where p.=p—e.

Ex. 1. Find the locus of points fixed in space about which at any instant
the moment of momentum is a minimum.

[If the extremity of e terminates at a fixed point f¢=60— M Vep, and the
locus of points for which T@ has a given value is the right circular cylinder
T(0—- M Vep)=TH.. Writing =M (pp+ Ve,p) we have

TOE=M*p*Tp*+ M?TV (e — ;) p2.
The locus is the line # Vep=V8p.p~". Compare Art. 99, p. 156.]

Ex. 2. A point moves in such a manner that the moment of momentum
with respect to it is constant. Determine the particulars of the motion.

[If 6. is constant, the relation (1v.) M Vpepe= — 60+ 0e+ M Vpp gives, on
differentiating twice and utilizing the equations of motion (Art. 119 (v1)),

MVpepe=—n+Vpl, MV (pepe+pepe)= — 7+ V& +Vpf

because 0 is constant. Forming the vectors of the products of right and of
left hand members of the first and second of these three relations, and
also forming the scalar of the product of corresponding members of the
three relations, we obtain the equation

pe=p—e= £V (-0~ MV pp)(n—Vpf) , .
X {MS(0— 0 — MV pp)(n—VpE)(n - Vp&— Vpé)Ft,
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8o that € is expressed in terms of quantities which are known when the
motion of the system is given. There are thus two paths corresponding to
the double sign symmetrically placed with respect to the path of the centre
of mass.]

Ex. 3. Refer the equations of motion to variable axes.
[See Art. 105 and the formulae of differentiation (v1.) and (x1.), p. 170.]

ArT. 121. In the case of a rigid body, let e be the vector to
any point fixed in it and let @ be the angular velocity. Then by

Art. 105, p. 170, .
P pr—e=V(p—€), cvieiiiiiniiiiiinnnn (L)

because the velocity of the point in the body at the extremity of
p, relatively to that at the extremity of ¢ is due to the angular
velocity w. Equation (I.) of the last article may now be replaced

by 0. =Zm,V(p;—€) Veo(p;— €} =ett, cevrraruanannne (11.)

so that 6. is a linear function of @. The linear function ¢. is
fixed relatively to the body because the vectors p,—e, cte., are
fixed in the body, but in considering the rate of change of ¢.w
we must take account of the change of orientation of the body as
well as of the change of w. We have (Art. 105 (1X.)),

(% = a(gzw) +Vopo=po+ Voge; cvuennnn.. (11L)
and equations (11.) of the last article become
Mi=§¢, ¢t Vopw=n—~MV(p—e)é; «uon..... (1v.)
and when e terminates at the centre of mass (Art. 120 (111.)),
Mp=¢ ¢o+Vodo=1r . ccoveeeiiiiii... (v.)

if (Art. 120 (1v))) ¢po=¢wo—MV(p—e)Vw(p—e¢) refers to the
centre of mass.
If the body has a fixed point, the extremity of e, (1v.) reduces to

P+ qubsw e T T (vL)

In general the vector ¢.w is the moment of momentum of the
body with reference to the fixed point which instantaneously
coincides with the extremity of the vector ¢, and the moment of
inertia round any line (Uw) through that point is

Se ‘1¢5w = ZWLITV Uw. (p1 —e) i (viL)

and this is numerically equal to the reciprocal of the square of
the parallel radius of the quadric

STGT= =1 wevriiiiiiiiniiiieninns (viiL)

The function ¢, may be called the inertia function corre-
sponding to the extremity of e.
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The principal axes of the body through the point are the axes
of the self-conjugate function ¢., and the moment of inertia
round a principal axis is maximum, or minimum, or at least
stationary in value. If the extremity of e is fixed in space as
well as in the body, so that the body moves about a fixed point,
it appears from (v1.) that when the body is set rotating under
no forces about one of these principal axes, it will rotate
permanently round it. For we have Vup.w=0 if  is along a
principal axis, and ¢.o=0 by (VL); hence & =0 since the function
has not in general a zero root.

The energy equation (Art. 119 (1v.)) easily reduces in terms
of ¢ and o to

(% (IMTe— MSeVor(p— ) — $Swdew) = — Séé—Swn,, . ..(1X.)

where 3, =3V(p,—e)£,; and when e terminates at the centre of

Mass d -
&(%M’I‘pﬁ —1Swpw)= —SpE—Swny ceviiniiinnn. (x.)
Ex. 1. Prove the relation (111.) by direct differentiation of the explicit
form $ew=Sm,V(p,— ) Ver(p; —€).
[We have (%. V. (p1- ) Vol —e)

~V . Va(p - Va(py -+ . (o~ Valpy ~ )+ (o1~ VaVulp )
by (1.). The first term on the right vanishes. The third is
Vo(p—9Sa(p—¢) or V.oV (s - Valp—e)]
Ex. 2. If Iis a principal moment of inertia at the extremity of the
vector ¢, or in other words a latent root of ¢, show that
B2 2+ (0240 )] — (' —n)=0,
where 2", »’ and » are three positive scalars, namely,
2= —Zm(p —e)f; 0= —2mmyV(p;—€)(p—€);
n=2Zmymans3(p, — €)(p; — €)(p3 — €.
[See Elements, Art. 417, and observe that ¢ew=n"w+Zm(p, — € Sw(p, —¢).
Compare Art. 65, Ex. 1, p. 92.]

Ex. 3. The function ¢« corresponding to the extremity of the vector &
drawn from the centre of mass is

Paw=0po+MVTVoB,

where ¢ corresponds to the centre of mass; the principal axes at the
extremity of 7 are the normals to the three confocals.

] Sa(¥Pp—wy'o=-1,
which pass through that point ; and the locus of points at which one of the
moments of inertia is equal to 7 is the quartic surface
So(Mp+Te?~ My 'o=-1 ‘
[If ¢ue=Ilo=¢a+MVeVam, we have (p+HTw:—-1)o+ HEGSawr=0,
etc., and =M/~ Tw2 Compare Art. 101 (xx.) and (xx1.), p. 162.] ;
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Ex. 4 A body under no applied forces moves about a fixed point.

The equation of motion ¢®+ Vwpw=0, furnishes the integrals
Pw=0, Swpw=—A?
where 6 and % are constants of integration. Interpret this result.

(2) The equation Swdw=—A? may be regarded as representing an ellipsoid
fixed in the body which rolls upon a plane fixed in space, and represented by
the equation Swf= —A2 the point of contact being the extremity of the
vector we

(b) The equation #?Swpw —A2pw?=0 represents a cone fixed in the body
which is the body locus of the instantaneous axis of rotation ; and because
the rate of change of o is the same with respect to the body as with respect
to lines of reference fixed in space (Art. 105 (x.)) it follows that this cone
rolls on the space locus of the instantaneous axis.

(¢) The extremity of the vector o describes in the body part of the curve
of intersection of two quadrics fixed in the body (the pollode) Swpo = — A?
and Sw¢?e=6?% and the locus of the same point in space is a plane curve
(the kerpolhode).

(d) The vector 6, though fixed in space, describes in the body the cone
92864710 — h262=0 where g =TE is the constant tensor of §, and the extremity
of @ traces out part of the sphero-conic in which this cone cuts the reciprocal
quadric S8¢10= - A%

(e) The reciprocal quadric, fixed in the body, passes through a fixed point
in space, and the central perpendicular on the tangent plane at this point
varies inversely as the angular velocity.

(/) The relations

Sw i+ Vea)=0, Séw(w—Vew)=0,

in which & is the rate of change of @ with respect to the body, may be
obtained by differentiating the equation of motion. Hence
d0 . (Swwt+ Voo?)= - 2Vae (s + Voo)

and P& (Swai+ Vow?) =22Ve Ve (i + Vo) ;
and the vectors w, & and & satisfy a condition

SVu(d— Vus) Vi (s + Vean)=0,
which is independent of the constants of the body. The corresponding
relation SVw(pie — 2Vebw) VD,wd2o=0
connects o and its first and second deriveds pw and D2w with respect to
fixed axes.

(9) Knowing @ at any instant and its tirst and second deriveds with
reference either to axes fixed in the body or in space, the function ¢ is
determinate to a factor.

Ex. 5. The angular velocity of a body moving under no forces about a
fixed point is expressible in terms of elliptic functions by the relation

w=(¢,+2)%a where i=,/(42%— Iz ~J) and $a+ Vagpa=0,

o. being a constant imaginary vector, ¢, being a linear function coaxial with ¢
and having for its latent cubic 4¢°— fg—J=0.
[Compare Art. 84, p. 124. Here the assumed expression for w gives

3y +2) Fat V(¢ +2)acp(¢y +a)ta=0
or 3 (g +2) Bat (g +2) TV adon/my(z) =0,
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where m,(z) is the third invariant of ¢;+2. We may obviously take the
first invariant of ¢, to be zero without loss of generality, so that the latent
cubic of the specified type, and the differential equation for  is reduced to
Weierstrass’s standard form.

The function ¢, is of the form ¢,=a+bx+cy where x and V¥ are the
auxiliary functions for ¢, and when the first invariant is t;fken to be zero,
3a+2bm”+em’'=0. The scalars b and ¢ are arbitrary constants of integra-
tion. Assuming a=wui+vj+wk where 4, j, % are the axes of ¢, we see that
Au=(B - C)yvw, Bv=(C— A)wu, Cw=(4~ B)uv, 4, B and C being the latent
roots of ¢p—the principal moments of inertia. Thus

. BC . c4 AB
*= =i -8" \/(A “BY(B- c)“c\/(B— OO~ 4y

and the latent roots of ¢ are 36(B+C—24)—3%c(CA +AB-2B0), ete.

Moreover since by definition of «, we have Sapa=0, Sap?a=0 and also
a?=-+1 as may be easily shown, we find Swpw==Sap(¢p +z)a=c4BC and
($pw)2=Sag¥(p,+x)o=—bABC, or in the notation of the last example,
¢ABC= —}? and b4 BC=g"]

Ex. 6. Resolve the vector of angular momentum ¢w, along and at right
angles to @, and investigate the relation of the components to the quadric
Swoém=—1.

[Compare Art. 111, p. 181.]

Ex. 7. The motion of a freely moving body is known, and it is required
to determine as far as possible its dynamical constants.

[The mass cannot be determined, but if we know the particulars of the
motion of three points, the extremities of ¢, ¢, and ¢, we can find v from the
two equations € — &= Vo (e — &), & — &= Vol ~¢).

Tn the next place, to find p, the vector to the centre of mass, we have

=p+ Vol —p), and ¢=p+Vao(g—p)+VoVa(q-p),
and because =0 the second of these relations gives p on solution of a linear
equation. To find the function ¢ corresponding to the centre of mass, we
differentiate  twice and use the results of Ex. 4, (f) and (g).]

Ex. 8. Given four particles whose united mass is that of a given rigid
body, it is required to connect the particles by a light frame-work, so that
the dynamical constants of the system may be identical with those of the
body.

[1f ¢A=—Zmyp,Sp,A where A is an arbitrary vector, and where the
vectors p;, etc., are drawn from the centre of mass of the body to terminate
at the particles of mass m,, etc., the problem is solved when we reduce the
function ¢ to the form

Pr= —aoSal —bBSBA—cySy\ —~d3S8N where aa+583+cy+di=0,
a, b, ¢ and d being the masses of the four particles and a, 8, y and & being
their vectors of position. Now for some scalar z, we have
za=80y8, wb=—S8ayd, wc=Saf38, wd=—Safy;
and we also have (Art. 65, Ex. 1, p. 92)
YA=-ZabVafSaf, m=ZuabcSafy%

The second of these serves to determine , for it reduces to m=z?abcda.
Substituting « for A in the first, we find Yra=2xbcdV (8- 8)(y —3); and when
we operate with S, S8 and Sy on this und similar expressions we have
Saya= —2%bed(b+c+d), ete., SayB=etc. =x?abed. It easily appears that
the six relations in «, 8 and y imply the remaining six involving § when
Saa=0.
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Assuming first any vector o which satisfies the condition
Sara= —a?bed(b+c+d)

—that is any vector which terminates on a certain quadric—we have next the
two relations SayB=uz%abed, SBYB= —s%acd(a+c+d) which require the
vector 3 to terminate on a conic. Selecting S there remain the three
equations Sayry =88yry =#?abed, Sy\yry= —s?abd(a+b+d) which determine
v as the vector to a point of intersection of a line and a quadric. Finally,
we have §= —dHaa+b8+¢y).]

ART. 122. When an impulse acts on a system of particles, the
velocity of the particle m, is changed from g, , to g, where

My(py— Pr.o) =M FAp+Ag+ete, ..ol (L)

where 1, is the external impulse acting on m,; and where Ay, Ay,
ete., are the impulsive actions of the particles m,, m,, ete., on m,.
These impulsive interactions satisfy conditions analogous to (I1.)
of Art. 119, and we obtain the equations

Zmy(py— pro)=2ZA, ZmyVpi(p1—pro)=ZVpAy, ... (IL.)

which are independent of the interactions. The work done on
the particle m, by the impulse is (Thomson and Tait, Art. 308)

—3S(p P10 A F A A s tete), o (1)
and the total work done on the whole system is

W=— %Zs<ﬁ1+p1,o)>\1 - %ZS<P1_ﬁ2+ﬁLo_p2,o)>\12~ . ~(IV-)

For a rigid body it is frequently convenient to define the motion
by the velocity (o) of the point of the body coinciding with
the origin and the angular velocity (w). Thus p,=0—Vpe,

and if A=3N, «=3VpA, ¢0=3Vp,Vapy, cocon..... (v.)

so that A is the resultant force and u« the resultant moment of
the impulse with respect to the origin while ¢ is the inertia
function corresponding to the origin, the equations (11.) become

M(c—ay—Vplo—w))=X, MVp(oc—ay)+d(w—wy)=p; (VL)
and because A, is parallel to the line joining two particles and

therefore perpendicular to g, — g, and to g, o — g, o, the expression
for the work done is independent of A,,, etc., and reduces to

W= —3S(c+o)A—1S(w+ o)ty coeeveraennnn. (viL)
because we have
ZS(c+0,— Vo (0+wp))A =S(0+ ) ZX +S(w+w,) EVp A,
When the origin is taken at the centre of mass, (VL) becomes
Me—a)=N\, Pplo—@p)=th cecueerreneen.. (VIIL)
where ¢, refers to the centre of mass, and thus we have at once
o=agot+M I\, w=wyt ¢, s eereeeiaannn. (1x.)
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or, in the language of the theory of screws, when a free body
having an instantaneous twist velocity (o) w,) is acted on by
an impulsive wreneh (u, A), the instantaneous twist velocity
immediately after the impulse is (ao+M-I\, wy+ ¢, 'u), the
centre of mass being the base-point. (See p. 171.)
When the origin is taken at an arbitrary point, we may replace
(V1) by
Moc—a,—Vo(w—w))=\, ¢o(w—wp)=u—VpX\,...... (x))

where (7, w), (6 ®,) and (u, \) are referred to the origin as
base-point and where ¢, corresponds to the centre of mass. This
is easily shown in various ways.

The form of the expression (viL) is independent of the choice
of base-point. In particular when the base-point is at the centre
of mass, we find from (vIL), (viiL) and (IX.),

W= —$(Mo*+Swpgw)+ (Mo’ + Swypew)
= =3(M "N+ Sugp, ) —S(e A+ wott). .ovonrnn. (XL)
Ex. 1. Prove that the solution of (v1.) is
(@ —wo)(m+ MSppxp+ M*Spdp . p*)
=¥+ UxpSp+HVpVp+ M p*Sp)(u—Vpd); M(o—0cg)=A+HUVp(w—ay),
where m is the third invariant of ¢ and where x and  are the auxiliary
functions.

[Compare Ex. 5, Chap. VIIL, p. 102.]

Ex. 2. A rigid body is moving in any manner and an impulsive force is
applied to a given point of the body so as to cause that point to move
instantaneously with a given velocity. Determine all particulars.

[The centre of mass being taken as base-point, and a being the vector to

the point in question and & being the velocity of the point, the equations
Mo—-o)=A, Plo—w)=VaA, oc—-Vav=a
serve to determine the unknowns ¢, ® and A. We have on elimination of
o and A, ¢po — MaVaw=dw,+ M Va(a—ay); and by Ex. 5, Chap. VIIL, the
solution may be written
(00— wy)(m— MBadpya+ M a*Sada)=MyVa(a—a)— M VeaVaVa(a - a),
where &,=ad,— Vaw, is the initial velocity of the point. Hence in terms of
© —w, as given by this equation
o—agp=a—0dg+ Va{w—0y) and A=H"Yo-0p).]

Ex. 3. A rigid body is moving in any manner. Suddenly a line in the

body is constrained to move in a definite manner.

[If o and B are the vectors from the centre of mass to two points on the
line, we may suppose the impulsive wrench to consist of forces A and A’
applied at the extremities of « and 8. Hence

Ma—a)=A+X, ¢(0—0)=V(er+BX), o=a+Vao=LS+Vpu,
where & and /3 are the velocities of the extremities of « and 3. From the

first and second equation we deduce S(8—a)dp(w—wy)+MSaf(o~ae)=0,
which asserts that the moment of momentum about the line is unchanged.
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We also have o=(a— B+2)(a — 3)71, where z is a scalar to be determined
by substituting for » and o in the equation just found. Solving the linear
equation for x we find v, and hence o and A and X'.]

Ex. 4. A rigid body is moving in any manner. It is required with the
least possible expenditure of energy to cause a given point to move in a
given manner.

[Writing equation (x1.) in the form

W= — (M (a+Vaw)?+Swpe)+3(H(ay+ Vawy) + Sw,day),
we express that this function of w is a minimum. We find
¢ — Mo Vaw=MVaa,
and as in Ex. 2, this gives
o(im— MBadpya+ M2a®Sapa)=MyVada-- H2VPHaVaVaa,
and substituting in oc=a+ Vaow, in ¢(v—wy)=p and in M(c—-oy)=A, we
determine the impulsive wrench and the instantaneous twist velocity.]

Ex. 5. If pand p' are the pitches of the screws of an impulsive wrench
and of the instantaneous twist velocity produced by the wrench on a free
quiescent rigid body ; if also &7 and @’ are the vector perpendiculars from
the centres of mass on the axes of these screws, Mo=M(p'+T)o=A,
p=(p+o)A=do.

(«) Hence in terms of A and w,

P =M1Bro, @'=M""VioT; p=Sdurl, @=Vowrl;
MTu)(p?+Two?)=TA, TA/(p*+Tew?)=Tdo;
ToUw=M/(p*+ T J(p?*+Ta?).

(D) The shortest vector from the axis of the impulsive screw to that of
the instantaneous screw is @' (S7gy'~1 - 1).

(¢) Show that
po. 0 =M(p+D)(p'+T); A=MH(p+T)dHp+T)r;
and express the moment of inertia about the line through the centre of mass
parallel to the instantaneous axis in terms of p, p/, @ and @'
(d) The cosine of the angle between the axes of the two screws is

) p’(p’2+TZU’2)_% ; and if the axes are parallel; that of the instantaneous screw
passes through the centre of mass or else the instantaneous motion is a
translation. In the former case the pitch and vector perpendicular on the
axis of the impulsive screw satisfy the condition

FSPANT=pV AL,

Ex. 8. Determine the dynamical constants of a free body by observing
the etfects produced by impulsive wrenches in starting the body from a
given position.

[If p is the vector from a fixed origin to the unknown centre of mass,
if an impulsive wrench is (u, A) and the corresponding twist velocity is (o, )
for the fixed origin as base-point, the equations are (compare (X.))

Mo—Vpoy=A, Po=p-Vpl,
together with others with accented letters ¢/, o, w, X, ", o", p", A" for
other impulsive wrenches and the corresponding twist velocities. From

these equations M, p and ¢ (corresponding to the centre of mass) are to be
determined. The mass follows at once from the first equation, and we have

M =8ro(Sow) =S8N (8¢ w')1=8\"0"(S¢"w") L
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The vector p is given by
Vie— M) (o' - M N)=VVpaVpe' = —pS(c - ¥-A)w'

And the function ¢ can be found from three couple equations. Some rather
elegant identities connecting the wrenches and the twist velocities may be
deduced from this beautiful problem of Sir Robert Ball's.]

Ex. 7. An impulsive wrench of given pitch and intensity is applied to
a free quiescent rigid body. The axis of the screw of the wrench passes
through a fixed point; find the direction of the axis so that («) the kinetic
energy, or (b) the angular velocity, generated by the impulse may be as
great as possible.

[The base-point being taken at the centre of mass, we have M.o=A,
<;bw=(p+Vy)]>O\ where TA, p and y are given. The kinetic energy is
—3S(p+Vy)Ap U p+Vy)A -4 M 1X2 and if this is a maximum subject to
the condition that TA is given, we have (p — Vy)d~L(p+Vy)A=gA where
¢ 1s a scalar—a latent root of the self-conjugate tunction on the left, and for
a maximum g is the greatest latent root. The kinetic energy is

g+ M HTA
The least latent root answers to minimum kinetic energy. For a maximum
or minimum angular velocity deal similarly with the equation

(- V)2 (p+Vy)A=gA]

Ex. 8. An impulsive wrench (g, A) is applied to a free rigid body
moving with the instantaneous twist-velocity (o, w). The change in the

kinetic energy is T S(wp+a)
y

where 7' is the kinetic energy that would have been generated were the
body at rest.

(¢) With the same meaning for 7, show that the wrench

(ny A). S(wp+aA). T1

on the arbitrary screw (u, A) leaves the kinetic energy of the body
unchanged.

(b) The centre of mass being base-point, any wrench on the screw
(¢o, M), acting on the body when moving with the twist-velocity (o, w),
leaves the screw of the instantaneous twist-velocity unchanged.

Ex. 9. Two bodies collide. Assuming that the impulsive interaction up
to a certain stage of the impact is equivalent to a single force (A) at the
point of contact, the equations of motion are

My(o) - o) =4, d(w) ~0)=Vak; Moy ~0o5)=~ Ay o(wy —wg)= —Va,A,

where (0, »,) and (o7, ®,) are the twist-velocities of the body M, just
before the commencement of the impact and at the particular stage of
the impact under consideration, the centre of mass of M, being base-
point ; where ¢, is the inertia-function of M, corresponding to its centre of
mass, and where o, is the vector from the same origin to the point of
contact ; oy, Wy, 0y, @), Py and «, being in like manner related to the body
M, and to 1ts centre of mass.

() The relative velocity of the points of the bodies in contact is
o/ + Ve o -0y = Vayay=0y+ Vaya, — 03— Voga, + (M T+ M)A
+V. 4 Var.a+ V. d Vad.ay;
or briefly, it is T'=1r+PA,
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where P is a certain self-conjugate function determined by the circumstances
of the impact and where 7 is the initial relative velocity of the points in
contact.

(h) For perfectly smooth bodies, VAv=0, where v is the normal to the
bodies at the point of contact, and the value of A corresponding to the end
of the “first period” of impact is

A= —vSvr(Svdv)1;
and the twist-velocity of the body ¥, immediately after the impact is
(o — (L +e) M WwSvr(Svdv) ™!, o~ (1+e)d, VaySur (Svdy)),
where e is the coefficient of restitution.
(¢) The total loss of kinetic energy is
—(1-e)8mv?. (Svdv) L
(d) For perfectly rough bodies, Vr'v=0. The value of A corresponding
to the end of the first period of impact is A= —®~Ir,; and the twist-velocity
immediately after the impact is
(o, - +e)M 1P, @ —(1+e)p, Vo, I7).
(¢) For perfectly rough bodies, the loss of kinetic energy is
—(1-e%)Srdir.

ART. 123. When a rigid body is not perfectly free but
constrained in any manner an impulsive wrench will in general
be partially neutralized by the reaction of the constraints.
Referred to the centre of mass as base-point, we have for a
quiescent body, .

Mo=A=N, PO=f—fh, ceereerrererrnnnn. (1)

where (u, A) is the impulsive wrench and (u, \)) the wrench on
the constraints, or where (—u,, —2A)) is the reaction of the
constraints. In order to determine the instantaneous motion
produced by the impulsive wrench (u, A), it is necessary to know
the evoked wrench (u, \,). We consider the case in which the
constraints are smooth, or so that no evoked wrench can generate
any motion. In this case the work done by the wrench (u, A)
must be zero, or we must have (Art. 122 (viL))

S{re+Xa)=0, coceiviiiiiiiiiiin, (11.)

where (u, A) is any wrench arising from the constraints and
where (o, ©) is any possible twist velocity of the body. The
serews of (u, A) and of (o, ) are said to be reciprocal when
this condition is satisfied; and for smooth constraints, every
possible twist wvelocity is reciprocal to every possible wrench
arising from the constraints.

A body with one degree of freedom can move only one way
from a given position, by a twist about some definite screw
(a1, ;). A body with two degrees of freedom can move in a
singly infinite variety of ways from a given position; if (s}, w,)
and (oy, w,) are two screws about which the body can begin to
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twist, it can begin to twist about every screw of the two-system
(2,0 +2,0q, Ty +2yw,), Where @, and x, are scalars, as easily
appears from the composition of small displacements (s,dt,, @,dt;)
and (g,dt,, w,dt,). Similarly a body with n degrees of freedom
can begin to twist about any screw of the n-system (Zz,0, 22,0,),
where (&, @) .- (o, wn) are m independent screws about which
the body can begin to twist; and being given m independent
screws about which the body can begin to twist, all possible
initial motions belong to a given system of twists. Every
wrench reciprocal to » independent screws of the freedom is a
wrench arising from the constraints, for every such wrench is
reciprocal to every possible twist on account of the linear
character of the condition of reciprocity (ir), and no such
wrench can generate any motion in the body. By expressing
that a wrench (u, A) is reciprocal to m screws of the freedom,
the number of its arbitrary constants is reduced from 6 to 6—n
since n conditions (I1.) must be satisfied ; and thus the screws of
the constraint compose a system of order (6—mn). This system
can be determined when the system of the freedom is known,
and conversely.

Again knowing the system of screws of the freedom we can
determine what Sir Robert Ball calls the screws of the reduced
wrenches. A reduced wrench causes no reaction on the con-
straints; it produces the same initial motion as if the body were
perfectly free. In equations (1) the wrench (u—pm, A—2X) Is a
reduced wrench, or (¢w, Mo) is the reduced wrench corresponding
to the twist velocity (o, w). The system of screws of the reduced
wrenches is (¢Zz,w,, MZz,0,) when that of the freedom is
(S0, Z2,0,).

Suppose now that we select n independent screws of the
n-system of the reduced wrenches and 6—m screws of the
(6 —n)-system of the constraints, and that (Art. 102) we resolve
an impulsive wrench (u, A) into its components on these six
screws, we shall have (compare (XVL.), p. 166),

w=w A, ASNEN, . (1L)

where (i, \') is the component of (u, \) belonging to the system
of the reduced wrenches and where (u, A) 1s the component
belonging to the system of the wrenches of the constraint.
The instantaneous twist velocity is then given by the relations

e=M"N, 0=0¢ . ciiririiraiiiiann (1v.)

Ex. 1. Prove that
p=¢A, p=—-¢N\

represent respectively a three-system of screws (u, A) and the reciprocal

three-system (i, \'), ¢ being a given linear vector function and A and A’
being arbitrary vectors.
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[Compare Art. 102 (1v.), and observe that if (&, ') is reciprocal to every
screw of the system (u, A), we must have S(uA'+p'A)=0 or SA(F'N +p)=0
for all vectors A.]

Ex. 2. Determine triads of co-reciprocal screws of a three-system.

[If the screws (my, Ay, (mg A;) and (us, " A;) of the system p=¢pA are
mutually reciprocal, SA(P+¢)A,=0, SALP+P)IA3=0, SA(P+P)A,=0;
or A, A, and A; are parallel to mutually conjugate radii of the quadric
Sp(p+¢)p=const. Thus

M@+ E, Al b+YH Al (b+e) 3k,

where 7, j and £ are three mutually perpendicular unit vectors.]

Ex. 3. Determine sextets of co-reciprocal screws.

[Take any triad of co-reciprocal screws of a three-system p=d¢A, and any
triad of co-reciprocal screws of the reciprocal system p= —¢'A.

Ex. 4. Resolve a wrench (or twist) into its components on six co-
reciprocal screws.

[If (gt A)...(igy Ag) are the six co-reciprocals, we can find a linear
function ¢ so that (), A;), (g, Ay) and (g, Ag) belong to the system p'=¢A’;
and then (py, Ay, (us A5) and (pg Ag) will belong to the system p’= —§'A".
We assume for the given wrench (u, A) that u=¢pA'—$'A” and A=A"+1";
whence we have generally A'=(p+¢ )+ P'A) and A"=-(dp+¢) W u-pA), -
and it only remains to resolve A along A;, A, and Ay and A" along A, A, and
Ag in order to obtain the required relations p=2zu,, A=2zA,.

Ex. 5. Find the (» - 6)-system reciprocal to a given n-system.

[This has been effected in Ex. 1 for n=3. Let n=4, and for any three
screws of the system construct the function ¢. Resolve any fourth screw
(iny Ax) as in the last example, so that p,=¢X —¢'A" and X, =X+ A", and
take two vectors A; and A4 which with A” compose a mutually conjugate
triad with respect to Sp(¢+ ¢)p=const. Then

(=25 A5 — 2P Aoy Z5hs+2Mg)
is the two-system reciprocal to the four-system. To determine the four-
system reciprocal to a given two-system, take any function ¢ satisfying
M =PA, pa=pX,, where (i, A;) and (py, Ay) are two screws of the two-systen,
and determine the vector A; conjugate to A; and A; with respect to the
quadric Sp(¢+¢)p=const. The required four-system is
(BapAs— PN, Zhgt X),
where A" and z; are arbitrary. Similarly we may proceed in other cases.]

Ex. 6. Show that
SN+ A =(p +#)SAN +8(y - 7)AN,
where p and p’ are the pitches of the screws (g, A) and (i, A’), and where
and vy’ are the vectors to points on their axes. Interpret this result,
and show that
- S(uA' +p'A)=(p+p)cosu+dsinwu,
where u is the angle and where d is the shortest distance between the axes.

BEx. 7. A body twisting along the screw (o, o) is suddenly constrdined
to twist along another screw (o, w,). Determine the motion.
[If (zoy, xo,) is the twist velocity just before the change and (yoy, yw,):
that just after, we have
M (y(oy— Vpuy) —z(oy— Vpu))=A, ydu;—zdw=pn—VpA,
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where (u, A) is the wrench arising from the constraint which produces the
change of motion. This wrench is reciprocal to (o, ®,), so that

S(TsA +wgu)=0.
Substituting we easily find y to be given in terms of # by the relation
Y (M (o, = Vpwy)* +Bwypwy) =2(HS (o ~ Vpw) (03— Vpwy)+Soda,). ]

Ex. 8. A body oscillates under the action of a conservative system of
forces,and at a certain part of its swing the wotion is suddenly changed from
a twist about one given screw (g, w;) to a twist about another (o, ).
Show that the twist velocities just before the sudden changes of motion at
the beginning and end of a complete oscillation are in the ratio

(Ma 2 +Bwpo ) (Mo +Suypw,) : (MSao,+ Sw,pw,)?,

the base-point being coincident with the position of the centre of mass at
the instant of the change of motion.

[This is the general case of a self-closing gate. By the last example
Y{( M2+ Swypwy) =2(MSo 0, + Sw,puwy,)
and y(MBo0+ Bw,Ppuy) =z (Ma 2+ Swpa,),

where » : 2’ is the ratio of the twist velocities just before the change from
the screw (o, o) to the screw (o, w,) and just after the change from (o5, w,)
back to (oy, »;). The system of forces being conservative, the magnitude of
the twist velocity throughout the partial oscillation during the continuous
part of the swing depends solely on the position of the body, and is the same
just after the sudden change from (o, w,) to (o, @) as just before the next
sudden change from (o, ;) to (oy, ;). To show that x is greater than &' or
that (Mo?+Sw,po) (Mol +Swypwy) — (MSo oy +Sw, dpw,)? 1s positive, turns
on the fact that a23%4 %6* — 28384 is positive when a, 3, y and § are real
vectors, 'The value of this expression lies between the limits (Ta8+ Ty5)%]

Ex. 9. An impulsive wrench reciprocal to the instantaneous twist
velocity of a free body at the moment of its application increases the kinetic
energy.

{The change of kinetic energy (Art. 122 (x1.) is —$Sup~ '~ 44112 and
this is equal to the kinetic energy which the wrench would generate were
the body at rest.]

Ex. 10. Determine the dynamical constants and the constraints of a
rigid body by observing the effects of impulsive wrenches applied to the
body when placed in a given position.

[Let (pyy Ap)y (4 A,y) and (o, o) represent an impulsive wrench, the
corresponding opposing wrench arising from the constraints and the twist
velocity produced. We know (g, w;) by observation—that is, a screw of the
freedom. A second impulsive wrench (u, A,) being applied, we find a
second screw of the freedom (o, w,), provided we have not oy =to, wy=tw,. In
this second case, however, we have a screw of the constraint, for the impulsive
wrench (pg—?fuy, Ay—tA;) generates no motion. Administering a third
wrench we obtain similarly either a new screw of the freedom or a new screw
of the constraint ; and from the results of applying six independent wrenches,
the screw systems of the freedom and of the constraint become completely
known. These systems being known, we can by (111.) resolve an impulsive
wrench (p;, A;) into the reduced wrench (u,, A,") and the evoked wrench
(py Ay); and we have as many sets of equations M(o;— Vpw)=A/,
¢, =p,' — VpA, as degrees of freedom. For one degree of freedom, the
first equation gives the mass M =8Sw A, : Sw,o; and a line locus

Vo,(pSo A - Vo A[)=0
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for the centre of mass. Eliminating p between this and the second equation,

the result is
V. Vo, A /(1) — po)Se Ay =1/ SV, A VoA
or separately,
SA{'po;=8Apy and So o =8(wp+01A) = A 280y0, (Swdy )7

The body has therefore a given moment of inertia (Sw;~’¢w,) round o, and
a given product of inertia (—SUwpUA,") with respect to Uw, and UA); but
it is otherwise indeterminate.

For two degrees of freedom, the two force equations completely determine
p, and the couple equations give completely ¢pw; and ¢pw, There remains
only one unknown constant, the moment of inertia (SVww,'¢Vw,w,) with
respect to the line perpendicular to w, and w,.

The dynamical constants are completely determinate in the case of three
degrees of freedom. Compare generally Art. 122, Ex. 6.]

Ex. 11. Two three-systems of screws can be in one way correlated, so
that each screw of one system, regarded as an impulsive screw, corresponds
to a screw of the other system regarded as an instantaneous screw. (Ball,
Treatise, Art. 318.)

[This has been virtually proved in the last example. We have to show
that if o=d¢,0 and p=c,A are two three-systems of screws, it is possible to
design and place a rigid body so that #(o~ Vpw)=A and ¢pw=p—VpA
become identities when o and p are replaced in terms of A and » and when
a one-to-one relation is established between A and . Substituting for p
and o, we have M(¢,~ Vp)o=A\ and pw=($,—Vp)A, so that

o=M(py—Vp)(d1— Vp)A=M('+Vp)(dy'+ Vp)A,
remembering that ¢ is self-conjugate, and this holds for all vectors A. Hence

(hapr = 1’y ) A= Vxsph = Vxy'pA=0,
where x, and x, are Hamilton’s auxiliary functions for ¢, and ¢, And
because A is perfectly arbitrary, we have (x,+ x.)p=2¢, if ¢, is the spin-
vector of ¢,p,. Thus the vector to the centre of mass is 2(x;+ x,) '€, and
hence M—'¢p is expressed in terms of ¢; and of ¢, The two three-systems
are connected by the relation M($p, —2V (x;+ x2) 'e&)w =2, so that to each
screw of one system corresponds a definite screw of the other.]

Ex. 12. Screws (u, A) and (o, o) are connected by the relations
A= 0+ Py, p=cs0+ Py,
where ¢,, ¢, P and ¢, are four given linear vector functions. Find the
conditions that (i, A’) should be reciprocal to (¢, w) whenever (u, A) is
reciprocal to (¢, o).

[The general relations of this example establish a homography between
serews (g, A) and (o, @) ; and when the conditions of mutual reciprocity are
satisfied, the homography is said to be chiastic (Ball).

The conditions are simply

S(Ae’ + po)=8(No + p'w)

o0 So(y o) +S0/ (g0 + by) =80 (o + ) + S (s + o),
where o, o, o and ¢’ are arbitrary vectors. Putting o and o’ both zero, it
appears that ¢, must be self-conjugate. In like manner ¢ is self-conjugate,
and the condition reduces to Sa'(¢, — P, )0 =So(y — ¢, )o', which requires ¢,
to be the conjugate of ¢, Thus the general chiastic homography is defined
by relations of the form

A=di0+ P, p=dw+d;a,
where ¢, and ¢; are self-conjugate.]
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Bx. 13. The screws of impulsive wrenches applied to a free rigid body
at rest in a given position (or the screws of the reduced wrenches applied to
a constrained body) are in chiastic homography with-the screws of the
corresponding instantaneous twist velocities.

[Here A=M(o—Vpw), p=dw+H Vp(oc— Vpw) and the conditions are
satisfied. This may be seen still more simply by taking the base-point at the
centre of mass.]

Ex. 14. The united screws of a chiastic homography are co-reciprocal.

[For a united screw p=x0, A=zw, and for a sécond united screw p'=x'c”,
XN =z, and hence 28(co’ +d'0)=8(pw’ +0'A)=S(Weo+oX)=28(c'v+ow’),
80 that the screws are reciprocal or else =2'. In the latter case every screw
of the system (oc+20', w+tw’) is easily seen to be a united screw of the
homography. The theory is quite analogous to that of the axes of a self-
conjugate function. The united screws in the general homography are to be
determined by solution of the equations zw=¢,0 + Pyw, ro=¢0+¢0o. On
elimination of o, we have

s =(¢,— 2)p; Ny~ 2) 0.
Compare Art. 115 (x.), p. 186.]

Ex. 15. There are n real principal screws for every position of a rigid
body having freedom of the nth order, so that the body will begin to move
from rest along one of these screws when a wrench is administered on that
SCrew.

[For the centre of mass as base-point, if (i, A) is on a principal screw, we
have p=x0, A=2w and also p—p,=¢w and A—A,=Mo. Now if (o}, o)),
(o, wy), etc., are screws of the freedom we deduce from these expressions the
n conditions .
28(oy0+ow)=Swpe, + HSca,, ete. ;

because the evoked wrench is reciprocal to every screw of the freedom.
Also w=23¢,m, and o=2t,0,, and on substitution for & and o and on elimi-
nation of the scalars ¢, a determinant of the nth order in z is obtained.
Putting # equal to one of the roots of this equation, the scalars ¢ can be
found from »—1 of the conditions.

Just as in the case of self conjugate functions, if a root « is imaginary
(# 4+~ =12"), the corresponding principal screw is imaginary

(@' +V 1o, NIV
and there is a conjugate principal screw (o’ —~/=10", =N =1X"). By the
last example these screws are reciprocal, and we find that
Sw'dw’ + Mo'?+ 8w’ Ppo” + Mo'"?

must vanish. This cannot be because the energy of a body moving with a
real twist-velocity (¢, @) or (¢, w”) is essentially positive.]

Ex. 16. A body which is imperfectly free moves under no applied forces.
Find the conditions that the instantaneous screw should be permanent.

[When the instantaneous screw is momentarily stationary it is said to be
permanent (Sir Robert Ball). For the centre of mass as base-point, the
equations of motion are

MG+ Voor)=~§,, po+Vodo= -1,

where (1, £) is the evoked wrench. The condition of reciprocity gives
Swdpw+ MSoa=0; and for a permanent screw @=zw, ¢ =20, and we must
have x=0 because Swdw+ Mo? is essentially negative. By means of the
equations of constraint we can eliminate £, and 5, from the conditions

MVoe=-§, Vodo= ~1,]
J.Q. (o]
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"BEx. 17. To find the principal and the permanent screws for freedom of
the third order.

[Here o=, w where ¢, is a given linear function, and the screws of the
constraint belong to the reciprocal three-system p,= — ¢, A. For a principal
screw

po=a0—p,=2¢0+¢/A, Hpo=20-];
and on elimination of A, we see that

(P+ M, Po=x(d+¢1)o,
8o that o is an axis and 2 a root of a determinate linear vector function,
For a permanent screw,

Vopo=—n,=¢'t, HVopo=~§,;
and on elimination of £, we find
Vo (d—M)o=0

and o is now an axis of the new linear function ¢ — M.
In the special case of rotation about a fixed point the principal screws
coincide with the permanent screws.]



CHAPTER XVL
THE OPERATOR V.

(1) The Associated Limear Functions.

ART. 124. In Articles 54-57 we investigated some funda-
mental properties of the operator V, and we propose in the
present chapter to supplement and develop the results already
obtained and to illustrate the application of the operator to
physical investigations.* Compare pp. 69-77.

In the first place we shall consider the invariants and the
auxiliary functions for the linear function

pa=—8aV.0, ¢a=—V8Sag, . .c.crcerrviiinnn(L)

* Hamilton’s writings on the operator V consist, so far as I am aware, and I
have searched through his manuscripts in the library of Trinity College, of a
communication to the Royal Irish Academy (July 20, 1846) which is published
in the Proceedings, Vol. iil., p. 291, and practically reprinted in the Phil. Mag.
of the following year, and of Art, 620 of the Lectures on Quaternions. In the
Lectures he writes : * The bare inspection of these forms may suffice to convince
any person who is acquainted, even slightly (and I do not pretend to be well
acquainted), with the modern researches in analytical physics, respecting
attraction, heat, electricity, magnetism, etc., that the equations of the present
article must yet become (as above hinted) extensively useful in the mathematical
study of nature, when the calculus of quaternions shall come to attract a more
general attention than that which it has hitherto received, and shall be wielded,
as an instrument of research by abler hands than mine.” He denoted the
operator by the symbol 4. In the Elements the operator occurs in a disguised
form in Art. 418 (v.), V being replaced by ~Da where a is the vector operand.
In the first note to Art. 422 of the same volume and in a letter to Dr. Salmon
(Graves’s Life, Vol. iii., p. 194), he announces his intention of concluding the
work with a brief account of a ¢‘quaternion transformation of a celebrated equation
in partial differential coefficients, of the first order and second degree, which
occurs in the theory of heat, and in that of the attraction of spheroids.” Un-
fortunately the volume was left unfinished at his death.

The applications, predicted by Hamilton, have been made by the able hands
of Tait, as will be seen on reference to the volumes of his collected Scientific
Papers (Cambridge, 1900), and to the last edition of his Treatise on Quaternions
(Cambridge, 1890). M‘Aulay has also made valuable additions to the subject in
his Utility of Quaternions in Physics (Macmillan, 1893), and the note in the
Appendix to the new edition of Hamilton’s Hlements (Vol. ii., pp. 432-475) may
perhaps be consulted with advantage.

No satisfactory name has been proposed for the operator. The author prefers
to call it Hamilton’s delta or more generally delta.
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because, for example, ya=(m"—¢)a= —SVa.a+SaV.c. It is
evident that y’ and ¢ have the same spin-vector. The vector
2¢ or VVg has been called by Clerk Maxwell the curl of the

vector g.

The function v and the invariants m’ and m are related to
the transformation which converts vectors p into vectors o where
o is a given but arbitrary function of p. As in Art. 63, if do,
dv,(=Vded's), and dv,(= —Sded'sd”s), are the elements into
which the elements dp, dv and dv at the extremity of p trans-
form, we have do=¢dp, dv,=y'dy, dv,=mdv. To calculate v
in terms of & it is necessary to use temporary marks to associate
the corresponding operator and operand, and we find (p. 90)

YVaB=Ve¢'ap’3=VV8ac.V'SBs'=VVV'SasSBs".
Now we may also put
YVaB=VV'V8as'SBo= —VVV'Sas'SS0,
so that on addition,
YVaB=31VVV' (SacSBs"—Sac’SBa)= -4 VVV'SVas'Vaf;
or for an arbitrary vector v,
Yy=—3VVV'8os'y, Y'y=—=4SyVV'. Voo, ....... v)

and in these expressions the accents are to be removed after the

performance of the indicated operations.*
Just as in (11L) we find the quaternion invariant of v/,

m —2¢e=—31VVV'Vaq', coorrnninan, (vi)
remembering that ¢e is the spin-vector of " (Art. 68, p. 98).
Thus m' =—48SVVV'Vas', ¢pe=1V.VVV'Vqq, .......(VIL)

and this expression for ¢e should be verified by operating with
¢ on the value already obtained for e.
It is also a useful exercise to verify that the third invariant is

v M=18SVV'V'Sa6'a", ccevrrerciniviaiann. (vir)
but a more familiar form of this invariant is
m= L O (1x.)
or oy oz
w o W
or %y Oz
w ow ow
or oy oz

*The device employed here is quite analogous to a transformation in Aron-
hold’s symbolic notation. B :
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which is obtained by putting p=iz+jy+kz, oc=iu+tjv+kw
and . 30 3¢ B0
m= —S¢%¢j¢k= —Sa—w a—g—a;. ................. (X.)
Ex. 1. Show that in terms of ¢, j and £, ’
Ao, . drdr  , <du , <(Ovdw Ovdw
ba=-38ui, ya=-8T Fa; w=I5L m _2(@-@-5 a—y).

Bx. 2. In terms of three arbitrary differentials of p and of the corre-
sponding differentials of o,

da= ZdoSad’pd"p Va= 2dpSd'cd"oa e Sdod’'ed’s

o= Sdpd’Pd”P ] = Sdpd’pd”p ) .—Sdpd’pd”p y
vy o 2do.Vdpd'p '+ on._24p. Vded's
m’+2e= Sdpd/pd”p ’ m 24)6_ Sdpd’pd”p .

(@) If dp=¢ da, write down the corresponding functions for ¢, and find
the relations between them and those for ¢.

Ex. 3. Prove that

w ou Bu || B B B [
oz oy Oz ou v ow |
v o 9 9 oy
2z % % || Ju o0 Ow
dw Jw Ow 0z 0z Oz

¢ Oy Oz du v Ow

Ex. 4. If o, a vector function of p, satisfies a scalar equation f(s)=0 for
all values of p, the third invariant m of the function ¢ vanishes; and con-
versely if m vanishes o satisfies an identical relation.

[If do is the differential of o corresponding to an arbitrary differential
of p, we have df(c)=0 or (say) Sudoc=0. Hence the three differentials
of o corresponding to three arbitrary differentials of p are coplanar and
Sdod’ed’ec=0. Conversely, if m is identically zero, three differentials of o
corresponding to three arbitrary differentials of p are linearly connected, or
ldo +1'd’'c +1'd"c =0, suppose. Hence o can receive only two independent
variations, or a relation of the form f(¢’)=0 must be satisfied by o.]

Bx. 5. If o satisfies two scalar relations fi(c)=0 and fy(oc)=0, the
function ¥ must vanish, and conversely. )

Ex. 6. If f(s)=0, and if we write dfo =Sudo, we shall have ¢u=0.

Ex. 7. If o is a function of p and if do=d¢dp, prove by comparing the
operators d=—8dpV= - SdoV,, that

V = ¢IV¢,

where Vo, operates on a function of ¢ in the same manner as V operates on
a function of p. (Tait’s Quaternions, Art. 480.)

Ex. 8. If ¢dp is the differential of a vector function of p,
VV¢'a=0,

where « is an arbitrary constant vector ; and if it is possible to find a scalar
multiplier to render ¢dp the differential of a vector function,

S¢'aVe'a=0.
Note that ¢’a= —VSao if ¢dp=do.]
p
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Ex. 9. If ¢, and C, are the principal curvatures of a surface #=const.,
show that ¢ 4 o _SVUVe, (0= —-}SVVVVUVAVY.
[See my note, Elements, Vol. ii., p. 251. If 7, and 7, are tangents to the
two lines of curvature, .
Cr +81,V. UVu=0, Cyry+87,V.UVu=0;
and (Ex. 4), since TUVu=1, the third invariant of the function —SdpV.UVu
is zero, and (), C;, and zero are therefore its latent roots.]

(i) Integration Theorems.

ART. 125. It has been shown in Arts. 55 and 56 that the
form in which the operator V naturally presents itself leads to
the two results (pp. 72 and 73).

jdy.q=vq.dv, Idp.g:V(du.V).q;.............(l.)

the first integral being taken over a small closed surface of
which dv is an element of outwardly directed area while dv is
the included volume; and the second integral being taken along
a small plane closed curve of directed area dy, where rotation
round dy in the direction of the eircuiting is positive. In both
relations ¢ is a quaternion function of the variable vector p.

In order to extend these results to integration over finite
regions, we shall first suppose that the quaternion g satisfies
certain conditions:—(4) that it is free from discontinuity, (B)
that it is single-valued, (C) that it does not become infinite at
any point of the region. Further we suppose (D) that the region
included in the surface over which we propose to integrate is
simply connected, so that any closed circuit drawn in that region
can be made evanescent by continuous variation without cutting
through the surface.

On these suppositions, we divide the region within a closed
surface into infinitesimal parallelepipeds, and we apply the
theorem of Art. 55 to each. Adding together the integrals

dv. q over the faces of these parallelepipeds, the sum obtained is

equal to the sum of the corresponding elements Vg . dv; but over
an interface corresponding to two parallelepipeds the directed
elements are opposite, so that if one parallelepiped contributes
an element dy.gq, the other contributes an equal and opposite

element —dy.q; consequently the sum of the integrals |dv. g is
the integrai over the bounding surface. Moreover the sum of

the elements Vg.dv is the integral qu.dv throughout the
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where the first integral is taken over the surface and the second
throughout the volume. '

Under the same conditions we can fill up any continuous
closed curve by a net-work of parallelograms described on any
surface terminated by the curve, and if these are all circuited in
the same direction the elements contributed by the common sides

cancel, and [dp .q= IV(dy V) (111.)

where dp is a direeted element of the curve and dv a directed
element of the surface. Hence it follows because (II1.) has a
value independent of any particular surface through the curve
that over any closed surface

jv(dv V) g =00 e (v.)

(a) Suppose a surface to exist over which ¢ is discontinuous, and imagine
the region of the volume integral to be divided into two regions by the
surface of discontinuity. Applying (1) to each of these regions and adding,

we find
Iquv = J'dv .9+ Idvu(ql —g)yeesrnnnicnniennunnannanses .)
an element of the surface of discontinuity furnishing the parts

dvyy. ¢y and dvy. gy or dvyy(g;—gy)-

(8) If ¢ is not single-valued, it is not hard to see when infinite values of
Vq are excluded from the region that, assuming any one of its values for ¢
at any point of the region, the value of ¢ at every other point of the region
is determinate. In fact starting from a point p with a given value of ¢ we
can return to P with a different value only if we thread some circuit along
which ¢ is indeterminate ; and if ¢ is indeterminate anywhere within the
region, its corresponding deriveds must be infinite, which is contrary to
supposition. When a curve locus of indeterminate values of ¢ exists in the
region, we may enclose it in a tube and so isolate it from the region. The
region thus becomes multiply-connected (D). .

(c) If ¢ becomes infinite at any point, we exclude that point by a small
sghere concentric with it and we take account of the surface integral over
the sphere, the vectors representing the elements of directed area being
drawn outwards from the region, that is, towards the centre of the sphere,
and the radius of the sphere being ultimately reduced to zero.

Taking the origin at the point, the element of directed area over the
surface of the sphere is dv=—Up.r%.dQ if 7 is the radius and dQ an element
of solid angle. Then for the sphere

Idv g=— jdﬂ Up 72 gl v, (vr)
If over the surface of the sphere
g=qo+r g+ 2. gutr 3 ggtete, conniiinnnnnn. (viL.)

the surface integral vanishes unless ¢, exists, and it generally becomes infinite
or indeterminate if ¢, etc., exist. Of paramount importance is the case in
which ¢ contains the term VTp~t.e= —Up.Tp~%.¢. 1In this case if no higher
negative power of » occurs, the integral becomes

: jdv g=- de €= — 4Tl cirieiiriiiiiniee e (vir)



_ART. 125.] SINGULARITIES IN INTEGRATION. 217

and we must replace (iL.) by
qu Ldo= j'dv @ ATl e (x.)

the origin being excluded from the volume integral.

In general when g¢., etc., are zero, by a well-known theorem in spherical
harmonies (Art. 127) we need only consider the terms in ¢, which are linear
in Up and which we may take to be SaUp+¢Up. Writing Up=li+mj+nk
where 7, m and » are the direction cosines of Up, and remembering that

fdQ. =4z, [dQ.Im=0, etc,
we have
Idﬂ . Up(SaUp + ¢pUp)=4rSi(Soi + $i)= — 4m(a+m"— 2€), weenen(X)
where m” is the first invariant and where ¢ is the spin vector of ¢. Accordingly
we must in this case replace (11.) by

qu .dv= Idv LgHdm(atm’ —2€), v (x1.)

where the integral on the right is taken over the boundary and where the
remaining terms are contributed by the surface of the evanescent sphere.

(0) If the region is multiply-connected we render it simply connected by
drawing diaphragms* when we fall back on case (a) if g happens to be
many-valued. A diaphragm corresponds to a surface of iscontinuity, and
g1~ ¢z in (v.) becomes np where p is the cyclic increment of ¢ and where 2 i3
an integer.

Considering now the similar cases of exception for the circuit integral, we
shall suppose .

(4" that a surface of discontinuity cuts the given circuit in two points
aand B. Let the surface containing the mesh-work be drawn through an
arbitrary curve AcB on the surface of discontinuity. On adding the results
of integration for the two circuits consisting of the part on one side of the
surface of discontinuity and the curve acs, and of the part on the other side
of the surface and the eurve Bca, we have exactly as in (v.)

Idp g+ Idplz. (1 —92)= IVde I A OTTRROTIOIPPPUN (x11.)

It follows from (1v.) that we get exactly the same result had any other
curve ADB been taken on the surface of discontinuity.

(8') If ¢ is not single-valued over the continuous net, its value is definite
if a definite value is chosen at some one point of the net, or else ¢ is inde-
terminate at some point of the net. Such a point may be surrounded by a
small closed curve Joined by a barrier to the circuit. The barrier must be
treated as a line of discontinuity and the value of the integral round the
closed curve must be taken account of.

(¢’) When ¢ becomes infinite at a point on the surface of the mesh-work,
let the point be surrounded by a small circle of radius 7. Then the relation
becomes, when we exclude the point from the surface integral,

IVde g= Idp .q— jrdUp Ao+ gy i+ g 24 ete.), wueennn(XIIL)

the second line integral being taken round the circlest This integral
vanishes unless there are negative powers of 7. The part depending on ¢, is

[dUp.gq,=[dUp.(SaUp+¢Up)

*The interior of a hollow curtain ring becomes simply connected when a
diaphragm is drawn across one normal section.

+ The two line integrals are taken in the same sense of rotation round the axis
of the small circle. If we choose the minus sign may be placed on the right of
the sign of integration, and then we shall have the surface integral equal to the
sum of two line integrals taken in opposite directions.
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sup(fose where ¢ is a linear vector function, the terms not linear in Up
leading to a vanishing integral round the circle. Putting Up=1cosw+jsinw
where 7 and j are in the plane of the small circle, the integral easily reduces
to w(jSai—iSaj+jpi—idy), and to w(Vak— x'k+2Sek) where x’ and € have
the same signification as in the chapter on linear vector functions.

Ex. 1. If (V) is any linear function of the operator V with constant

coefficients,
[/@).q=[7(9).q.dv, [f(dp).q=[F(VAWV).¢q,

and fa.f@)=[q./(9).dv, {q.fdp)=] g-f(Vavv).

[No step in the proof of the simpler case need be modified. In the
second set of relations the operator is placed in front of the operand. See
Art. 57, Ex. 11, and M‘Aulay’s Utility of Quaternions in Physicsﬁ

Ex. 2. In general if f(«) is a linear function of an arbitrary vector a
while the variable vector p is involved in the constitution of the function,

show that
[Aan=[f(V).dv, [F@p)=]s(VaV),

where f(V) means that V operates iz situ on the variable vector p as involved
in the structure of the function.

Vpdp

T = - [8avw. vTp,

Ex. 3. Prove that j

where no infinites occur.

[See Tait's Quaternions, Art. 504. Here the line integral is IVdeTp'l,
which transforms into
[V.Vaww.VTpt or [dvweTp-[Sdww.vTp1]
Ex. 4. Prove that
quv:%[p.Vq.dv—%Ipdvq.

[This is an example of an extensive class of transformations depending on
the invariantal properties of V. Transforming the surface integral, we
have Ipdvq= I p(V)qdv, where V operates both on p and on ¢. But
pV=Vp=-3. See Art. 132, p 235.]

(iil) Inverse Operations.

ART. 126. We shall now establish general solutions for the
equations
Vp=gq,and Vir=gq, .............. ereerenen 1)

where ¢ is a given quaternion function of p; or we shall assign
definite interpretations to the functions

for all points of an arbitrarily selected region within which
infinities do not occur.
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We shall first prove the transformation*

jVu .Vp. dv=Idu. w. Vp—IVrop .do

=jVu dv. p—IV(u—Tp'l)V pdv—dmp (L)

in the case in which p does not become infinite within the region,
while « tends to the value Tp~? at the origin which we suppose
to be taken within the field of integration, and where 47p in the
third member is 47 times the value of p at the origin. The
suffixes are intended to indicate that the affected symbols are
free from the operation of V. . o ,

Surrounding the origin by a small sphere and supposing (V)
to operate in situ on w and on p we have

IVM .Vp. dv=I(V)u .Vp. av—.j‘VuOVp .dv

=jdu Lw. Vp-—J.VuOVp .dv

for the region between the small sphere and the boundary, the
surface integral over the sphere vanishing by the last Article
(compare (VIL)). But these integrals may be extended through-
out the entire region, for we shall show that the integrals taken
through the volume of the small sphere tend to zero when the
radius is indefinitely diminished. Within the sphere we may

take w=Tp~! and dv=Tp?. dQ. dTp,

so that jVu.Vp.dv: —jUp. Vp.dQ.dTp

which vanishes in the limit. A fortiori the integral
jVuOVp . dv=ij71 V. dv

for the small sphere vanishes. Thus the first part of (1IL) is
proved.
Again for the field exclusive of the sphere

jVu .Vp.dv= jVu .V)p. dv—jVuV . pedv
=_‘.Vu Ldv. p—47rp—jVuV . pdv
by (ViIiL) of the last Article because for the surface of the sphere
jvu Jdv.p= +ij~2 .Up.Up.Te?.d02. p= -dep.

* It is manifest from the proof of these relations that they are valid when
neither p nor u become infinite in the field of integration provided we omit the
term in Tp~! and the term 4mp.
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Also it is easy to see that VIp~'V=V2Tp"! (or more generally
that V.Sq.V=V23q), and this vanishes for all points of the
region outside the small sphere. And because u—Tp! does not
become infinite at the centre of the sphere, we have

| IVu.vi{.dv=jvu.dy.p—4rp—IV(u—Tp—l)v.po.dv,

where the volume integrations are extended throughout the
whole of the original region. Thus (111.) is completely established.
In particular when u is a scalar we may replace (111.) by

IVqu . dv=jdy . Vp-juvzp .dv

- jVu dv. p—jvz(u—'r,,—l) . pdv—dap, ...(TILY

Changing the origin or replacing p by p'—p in (11L), and
supposing p’ to be the current vector in the integrations, we
obtain for the particular case in which w=T(p—p")"! the
important identities,

Ve . dv j d .V I , 1 , L
= . - . V. v Ay p (1.
P LwT(p = Vet G VP )

o] Tp_of dvp
AnT(p'=p)  J4xT(p'~p)’
the second being deduced from (111) by replacing Vu by
V. T(p’—p)~! or by its equal —VT(p'—p)~! and taking V out-
side the sign of integration.

If then Vp=gq, we have

V‘1q=j Vg’ .Idv’ _v.", du’.lq’
47T(p'—p) J4=xT(p'~p)
‘dv’ dv’.p’

47T(p'—p) J47T(p'—p)
and in this relation p’ is any function which over the boundary
satisfies Vp=gq.
In like manner ‘

’ . d’U’ dyl . V/T’ 1
V-2 =j 1 7 "‘j 7 +J‘V’-—r'/_'
1= )axT(o =) J42T (o —p) 47T (p'—p)
where » is any function 'which over the boundary satisfies
Vir=gq. It may be observed that in these results there is s

certain analogy to the solutions of the linear funetion equations
of Art. 65, p. 92. '

1 ,
.m.du.p (V)

+V’

Y7, (VL)
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If we operate on (VL) by V and put p=V» we find on com-
parison with the second form of (v.) that

V.V 2%=V-lg iiiirviiirninianiinnn (vn.)

because the last integral of (VL) vanishes under the operation
of V (or of —V’ under the sign of integration operating-on
V'T(p’— p)~?) provided p does not terminate on the boundary.

Ex. 1. Find the potential which produces a given distribution of force
in a given field.

If £ is the force and P the potential, we have to determine a scalar
function P from the equation §=—VP. By (v.) this function is
_ Své.dv Sdv'§ PSAvwW . T(p—p)! '_'I
— U1 _ .
P=-v f47rT(p—p’)+ 41rT(p—p')+f 4
Ex, 2. A quaternion p which satisfies the equation V2p=i0 throughout a

given region is expressible as a surface integral over the boundary ; and a
quaternion p which satisfies Vp=0 throughout the region is of the form

dv.p
= —V N
P 4 T(p-p)
Bx. 3. A scalar satisfying the equation VP=0 is constant. A veetor
satisfying Vo=0 is expressible in the form o=VP where P is a scalar
function satisfying V2P=0.

Ex. 4. Construct quaternion functions of p, homogeneous and of the
first and second orders, which shall vanish under the operation of V.

[For the quadratic function assume p=Spdeo+a.Spd.p where n=1,
2 or 3. We have Vp=—2¢op—22d.pa,, and if SVp is identically zero the
condition S,a,=0 must be satisfied. In order that VVp may vanish, we
must have ¢op= —ZV,pa.=+Zp,Vpa, since ¢, is self-conjugate. Again,
because VZp=0, the first invariants of the functions ¢ must vanish. But in
general m'Vpa=Vppa+ Vépe+$Vpa, and in the present case

SV pdun+ZVapan+ Zh,V pa,=0.

Hence by the former condition —ZV¢,pa, is a self-conjugate function
provided only that Z¢,a,=0, and that the first invariants are zero. Thus

p=—28paypa.p+ Za.SpPap,

where m,” =0, Z¢n0,=0, vanishes under the operation of V.]

Ex. 5. Determine the extent of the arbitrariness in the dissection of a
%ua.ternion into the parts V-18Vg and V-'VVg on the supposition that

~18Vyg is a vector.

[The most general expressions for the parts are V-18Vg+o and
V-1V Vg — o, where o is a vector satisfying Vo=0. See Ex. 2.]

Ex. 6. Divide a vector o into two parts oy and o, so that SVe,=0,
VVo,=0.

[Here 0,=V-18Vo and ¢,=V'VVg. We may calculate one of these,
say o, by the general formula, and the other is o — oy ]
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Ex. 7. The general solution of the equation

mVSVo +nVie=§
may be written in the form
. -1 -1
=2 (V SV£+V VV&).

m+n n
[The equation may be transformed into (m+n)VSVo+2VVVe=§, and
by the last example, VSVo=(m+n)"IV-I8VE, VVVer=n"1V-1VVE The
solution given above of the equation of equilibrium of an elastic solid may
be expressed more simply in the form o =V-2(n-1§ — ma~1(m+r)"1V-18VE).]

Ex. 8. If V=0 at all points within a closed surface, and if VZ,=0 at
all external points; if p,=p over the surface and if p, tends to zero at infinity,

= _ dV’ . V’(p’ _P/’).
4w T(p" - p)
[Integrating throughout external space we find if V2p,=0, see note p. 219,

- f v . V'p, . T(p - p)i+ f V. T(s'=p)t.dv . p/=0,

when p terminates at an internal point so that T(p’ —p)~! does not become
infinite. The surface integrals are to be taken over the closed surface and
over an indefinitely large surface, but it easily appears that the latter part
of the integer vanishes since p, vanishes at infinity. Putting V2p=0 in (1v.),
remembering that p,=p over the closed surface, and subtracting, we have
the required result.f

Ex. 9. If f,p is a homogeneous function of p of order » satisfying
V¥, p=0, show that
' Tdv'
o= (2n+1). [Lo0 - Td
fp=n1). [T

when Tp<a, the integration being extended over the sphere whose centre is
the origin and whose radius is a.
[The function corresponding to the p, of the last example is

Jop . (@TptyPn+2,
(See Art. 57, Ex. 12.) Here V(p'—p/)=(2r+1)a Up'.f,p’ over the
sphere and dv'=Up'Tdv".]

(iv) Spherical Harmonics.

Art. 127. If f(V) is any rational and integral function of V,
homogeneous and of order m, the function f,V.Tp-! is a solid
harmonic of order —(n+1), for it is a homogeneous function of o
which vanishes under the operation of V2, the scalar operator V2
being commutative in order of operation with f,V. Further
Tp™*1. fuV.Tp-! is a solid harmonic of order m. (Art. 57,
Ex. 12, p. 76.)

Because we may suppose £,V to be expanded in the form

FaV=2a8¢,YSa,V ... SanV,eeeeiriiiii (1)
it follows from Art. 54, Ex. 2, p. 70, that

Tp2+l £,V . Tp = (=) 1.8.5. ... 20— 1)(fap—Tp®. fa_zp), (IL)
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where f._,p is a determinate function of p, homogeneous and of
order n—2. Hence we may expand any homogeneous function
of p of positive order n in a series of solid harmonies, of orders n,
n—2, n—4, ete,,
 fup= T2+, £,V . Tp-1
==y 1.3.....2n=1)
Tp2=3. fu,V.Tp?
2 P n-2 P
+To* T3, . (2n=5)
where fn_.p, fa-sp, ete., are functions defined by equations such
as (IL.).
Any integral of the form P =J-pd’v.T(p—w)“1 in which o is

+ete., .....(11L)

the current vector and in which p is independent of p may be
expressed in the form
P=fV.Tp Y cinriiriieiiirennnnans (IV)

provided Tp is not less than the greatest of the tensors Tew.
For (Art. 59 (xL), p. 79),
. pdv =J. SwV i _ _1— .

P= T(p—w) pdv.e 'Tp—fV'Tp’ ......... .)
and we may speak of P as the potential at p due to a distribution
of density p although it is not necessary to suppose that p is a
scalar.

If Q= quv’. T(«'— p)~! is the potential of a second distribution
of density g, the mutual potential is

_ [ pgdvd? _j , ,_-“
W—IT (0= P,qdv'=|pQudv. «cevvvivrneannnn. (vi)

If the second distribution lies outside a sphere of radius a
having its centre at the origin and including the first distribution,

we have by (v.), ,
1 , 1 ,
W=“.fvm'.m. qd’U =U.fV,,,! .m.qdv] _

=[=9. j T(_-‘lpfi_‘i'w_,)]p; F=V). Qg eereren. (viL)

provided we reduce the temporary vector p to zero after the
performance of the operations indicated, and the suffix 0 serves
to remind us of this reduction.

If Q=g.(p) is a solid harmonic of positive order =, and if we
suppose the corresponding distribution to be a surface distribu-
tion on the sphere, we may replace

qdv’ by (47) 1. (2n+1).a . gu(e'). TdV,
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or by (4m)1.(2n+1).a". g, (Uw).dQ,

utilizing Ex. 9, Art. 126, and dropping the accents as being no
longer necessary. In this case (VIL) becomes

4. f(= V). gu(p)y= (2% + l)a"“jPa.gn(Uw) .dQ. ......(vIIL)

In this expression it is only necessary to take account of terms
of order n in f(—V), for g.(p) vanishes under the operation of
terms of higher order, and the results of operation of terms of
lower order vanish when p is reduced to zero. :
If P is a solid harmonic of order —n—1, the form of the
function fV is given by (111), and
o f,,V . Tp -1
— 2n-~1 =
P=Tp 'f"p'(—)n.l.s.....(zn—l)

=fV.Tp1;..(1x.)

.and aecordingly (VIIL) becomes

4<7rfn( —_ V) .gnp
=(—)n.1.3.....(an_1)(2n+1).jfn(Uw).g,,(Uw).dQ; (X))

while if the order of the harmonic P is —(m+1) where m is not
-equal to n, we have

j Fn(U6) .« Ga(U) AL =0, v (x1)
Again if
P=T(p—a) 1= .Tp-1=3Ta*Tp-"-14,(Up),......(XIL)
we find on substitution in (vIIiL),

g Ua) = @0+ 1) 4,(Uw)ga(Ue). 42,
0= j Ar(U)gu(Uw) . dQ

because F(=V).9:p)= e . gu(p)=gnlp+a).
Hence we can expand any function g(Up) in a series of
spherical harmonics, the harmonic of order » being

9:(Ua) =(2“f; l)jA,,(Uw)g(Uw) LAQ. e (XIV)

Bx. 1. A scalar solid harmonic of order — (n+ 1) may be expressed in the
form Sa,V.SayV.....8a,.V.Tp™,
where a,, ay, ... a, are real vectors.

[Consider the edges common to the cones F,,0=0, p?=0. These group into
conju%ate pairs B+~/—18 and B—v=1f3, and each conjugate pair lies in
a real plane Sap=0 where a=VB3. Having determined the vectors
@y, Gy ... @y We have a relation of the form

Fop=p*F, sp+t.80,08a5p... Sanp,
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where ¢ is a scalar and where F,_,p is a homogeneous function of p of order
n—2. If F.V is the generating operator (see (1x.)) of the harmonic we have,
on putting V for p in the above relation,

FV.Tp1=¢t.8a0,V8a,V ... 8,V . Tp~! becanse V?Tp~1=0,

and the scalar ¢ can be found by comparing a coefficient.]

Ex., 2. If ¢ is a quaternion associated with each element of mass of

a body,
[qdm=F(V). g [1gdm=Vg (V). q,

where T is the vector from a point in the body to the element dm, where g,
is the value of ¢ at the origin of vectors 7, and where Vg operates on f(V) as
if it were a function of a vector V.

(@) The first terms of the function (V) are

FV)= M~ 31,V +HSVEY — (4 + B+ C) V% —ete.,

where J is the mass of the body, T, the vector to the centre of the mass, @
the inertia function for the origin of vectors = and 4, B, ¢ the principal
moments of inertia for the same point.

[We have
Igdm = Ie “S%am . Go= I(I — STV +487V2—ete)dm . ¢4 5
and because STV2=12V24+ V1 V2, IVTVV‘rdm =3V
and [rdm=~3(4+B+0),

the expansion is justified. Again the differential of fa corresponding to da is
dfa=-8daVa. fa= — [Sdare "dm.]

Bx. 3. A heavy body is placed in a field in which the gravitational

potential is P. The potential energy of the body (W), the resultant force

and the resultant couple (A and p) acting on the body and referred to its
centre of mass, are

W=MP+1SVOV. P, A\=MVP+}SVIV.VP, n=VIVV.P.

(v) Various expressions for V.

ART. 128. We shall now examine in greater detail than in
Art. 57 the various analytical expressions for the operator V
and for V2

In terms of three arbitrary differentials we may write

Vaad4+ NN o, (1)
where (Art. 54 (VL), p. 70)
_ Vdpdp ,__ Vdpdp v___Vdpdp . (1)
Sdpd’pd”p’ Sdpdlpd”p’ Sdpd,pd”p
The operator V? is now
V2=3SN A2+ SNNAA"+ANA"A)+ZVA . 4, ........(1IL)

and in the third sum V operates on the vectors A alone and not
on the operand of V2
1.Q. P

A=
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Remembering that V2 is a scalar operator, this breaks up into
the two parts
V2=3IN2d2 4+ ZSAA"(d'd” +d"d)+ZSVA . d; . ... (v.)
0=3VAN . (dd"=d"d)+ZVVA. d o (v.)
It is only when the differentials are independent that the
order in which the differentiations are performed is indifferent,
and it is only in this case that we can generally suppress the
terms involving d'd” —d"d’ and similar expressions in (V.).
When independent differentials are employed, we use the
expression (Art. 57. (1IL), p. 74),

_Vows 0 _ Ve 0 Vepy 2. ypy
Spipaps QU Spippy OV Spypspy OW

or as it may be briefly written

ik
s e

where the vectors v, v, and v, satisfy the relations
Syp+1=0, ete,, Srepy =0, Spgp,=0, ete.;...... (vIIL)
or again we may put
V=Vu.3+Vv.2+Vw.3 ................ (1x.)
ou w oW

6] 6]
V=V1@‘+V2%+V3 wrvreesenenn o VIL)

as we see by comparing the results of operation of the forms
(vit) and (1IX.) on u, v and w. Thus

= V'u,, Vo == V'U, Vg = VW iieiiiiiiiiinianas (X)
and VYV, =0, VVi=0, VVi=0. .occccurrrrnnnn. (xX1.)

The vectors vy, v, and y, are the normals at the extremity of p
to the three surfaces w=const., v=const. and w=const. which

pass through that point.
The appropriate expressions for V? are now

Vem 52 23S o 4 SV o (x1)
lau2 za-avaw l.au, PRI PRRe .

a2
du?

Again introducing the operand g for the sake of greater
clearness, we may write

0 (o] (o)
{@(VP2P3 . 9)+@(Vpspl Q) +‘370(VP1P2 . ‘D}

Sp1paps
because the terms which involve the second deriveds of p, such as

o2 6]
2 2 — 2, .
or VZ=3(Vu). +2SV1)V'w.ava 42V Uz ...(xuL)

, (XIV.)

Vg=—
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Vo5 - ¢+ Vpspy, . , cancel in pairs. Operating with this form
of V on (v1.), we have

1 D (Vo D 3 (Vpsps . Vpsp, D
Vi 4 {2_ Vo’ 0\ 50 (Voyps. Voypy 0 } xv.
Sp1psps au<SP1P2P3 au) 5u< Sp1paps av> (=v)

where the second sum contains six terms, and to this the sign
S may be prefixed. Or in terms of the vectors v it easily appears
that this reduces to

3 v,? Q 2 (Svw, 9

Vi= —( L —) —( 1-2 —)} XVL
+Svly2u3{zau Svyveys U +Zau Svvey, OV (xvr)
Whenever the surfaces, = const., v=-const. and w=_const., are
equipotential surfaces with the corresponding potentials, u, v
and w, the operator V2 is a homogeneous quadratic in the

0
2w v ow

directly from (x111.). The converse is also true.

When the surfaces are mutually rectangular, the operator V2
is independent of the products of differentiating symbols. In
this case we find from (xv.) the most convenient expression for

V2 to be 1 2 o)
Vi T (NI R 32
z (T P (xVIL)

T. pipopy  OU

differentiating symbols This property follows

Ex. 1. Determine expressions for V2 where
(1) p=u{({cosw+jsinw)sinv+kcosv};
(2) p=u(fcosv+jsinv)+iw;
3) p=N{(Pp+u)(P+v)(Pp+w)}.¢ asin Art. 84.

Ex. 2. If a scalar function P of a scalar function u of p can be found to
satisfy V2P =0, show that
otP P V2u
2 9L o, 98 Y
(Vu)?. Sl + V2. 5 =0 and VVuV, V) 0.
(See (xm1.) for the first condition. The second expresses that V2u . (Vu)~2
is a function of «.]

Ex. 3. Given that a family of surfaces w=const. is an equipotential
system, show that the potential corresponding to  is
v2u du

P= Idu PO
[See the last example.]

Ex. 4. A family of concentric, similar and coaxial quadrics compose an
equipotential system. Show that the sum of the reciprocals of the squares
of their principal axes is zero, or else the quadrics are spheres. Determine
also the corresponding potentials.

[Here u=4Spdpp, Vu= —¢p, V2u=m". The condition of Ex. 2 becomes
Vopd®p . m"=0.]
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Bx. 5. Find the condition that the family of surfaces f(p, #)=0 should
form an equipotential system, and determine the potential when the
condition is satisfied.

[Iniagine « to be expressed as a function of p by solution of the equation
f(p, ©)=0. On this understanding we may treat f(p, u)=0 as an identity
and equate to zero the results of operating on it by V and V2. We find

¢} s G 9 o
Vi+Vu. %:0, V‘f+2SVua—Y;f+ Vi 2yf;+(Vu)2 . 3—1{2.:0’

where V operates on f as if f were a function of p alone, and where

consequently V and 5a 2Te commutative in order of operation on f.
u

Utilizing the results of Ex. 2 to eliminate V% and eliminating Vo we find
2, 9P _0 (af 1 ) Vi of
5018 5% =2 °8\ou (R TV e
The condition to be satisfied is that the right-hand member—a function of

and w—should reduce to a function of u alone by aid of the equation
f(p, w)=0. If F(p,u) reduces to a function of u alone by aid of the equation

flp, w)=0, we must have VF+Vu. %{; [| Va || Vf or simply VVfVF=0.
Thus the condition required is
° of 1 Vif of | _
vvf V{a_u -log (au’ (Vf)?) et 0
Ex. 6. Show that the family of confocals Sp(¢+u)'p+1=0 is an
equipoténtial system, and détermine the potential.

I:Here we have Vf=-2(¢+u)"p and %: —(p+u)pt=-HVS);

also V= — 95i(h+u) i =23 (a2 +u)
These give

0 oP 1 )

501085, = 12 = 5,108 N{(a?+u) (b1 +u)(cE+u)},

du
and r-r,f V@ )@y
Ex. 7. The condition that the family of surfaces f(p, u)=0 should
compose a system of characteristic surfaces in an optical medium of constant

density is AAvAY {(Vf)2<%>_2} =0,

Hamilton’s characteristic functions satisfy the relation TV@=n, where n
is the index of refraction of the medium. If the family of surfaces satisfies
the condition we must bave @ a function of %, so that V@=@Vu= — @' 7'Vf,
where the accents denote differentiation with respect to u. Hence when n
is constant, TV/. f*~* must reduce to a function of u, or VVFV(TVS. f1)=0.]

(vi) Kinematics of a deformable system.

ArT. 129. If ¢ is any function of p and t, its total differential
may be written in the form

dg=qdt—SdpV .q; ccoverrriiiiiinninn (9]
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and in particular when we replace dp by odf we shall write
" Dg=¢dt—SoV.q.dt and Dg=¢—ScV.q. ......... (1)

When & denotes a velocity, Dyg is the rate of change of the
quantity ¢ regarded as associated with the moving point. On
the other hand ¢ is the rate in change of ¢ at a fixed point, and
—8dpV . ¢ is the change in the value ¢ from the extremity of p
to that of p+dp at a given instant.

If dp, dv and dv are elements of directed line, directed area
and volume respectively, at the extremity of p in a medium
moving with the velocity o, we have by Art. 124 (1r), p. 212,

Dy (gqdv)=(D.g+m"q) . dv, ]
D.(Sodv)=S(Dw+xm). dv=S&dy, [ ......... (L)
Di(Sodp)=S(Diw + ¢'®) . dp=Sadp, j

where* (Art. 124 (1.) and (1IL))
ZD'_._= D¢U+XU = Dtm— VVVG'ZD'O, ]
a=Do+¢T=Dm—~VSsw,, f

because for example we have SeD.dv=Soy'dv=Symdy.

In terms of the spin-vector e=3}VVe, the divergence
m”= —8Vs and the self-conjugate part ¢, of ¢ we may also
write

g=Do-Veo+(m'—¢)o, g=Dw—Vez+¢m; ... V.)
or explicitly in terms of o we have

5=0—-VVVeo—6SVam, §=6—-VSew~VeVVam. ...(VL)

To prove these results observe that
B=w—S80,V .0 —5,S5Ve+S,V .o
=5—S¢(V). 5+8a(V).e—0,SVe
and that .
o=w—Se,V.m— VSw,0 =8-S0,V . 5+ VSmo,~ VSewm,

where (V) operates in situ both on ¢ and @ and where ¢, and @,
are free from the operation of V.
In addition we may write

Di+m)g=¢—Sa(V).q ccerrrrriiiniis (VIL)

because this expression is §—Sa\V . q—SVeo . g,
We may connect this with previous results by observing that

(D;+m")Soe=8(gw+5e)=S(Bw+oe) ......(VIIL)
is a consequence of (IV.) where w is any vector function of p and ¢,
Also SVG =D+ m)SVB. cvvreeerrreeenfni(IX)

* See H. A. Lorentz, Encyklopidie der math. Wiss., V,, p. 75.
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We may also observe that if w=VVa, we have by (v1.)
VVg=VVs-VVVeVVo =0~ VVVoe, SVu=0;

since ¢ and p are independent, so that the order of operation by
V and of partial differentiation with respect to ¢ is indifferent.

Hence VVa=w, if o=VVo. (x.)

From these relations we derive various forms for equations of
continuity ; and the voluminal, the areal and the linear equations
of continuity are respectively

D:+mMg=0, m=0, &=0. ...coccvrrern.n. (x1)

The first asserts that gdv does not change for the element of
volume ; the second requires Smdy to remain constant for all
vector areas dv, and Szdp remains unchanged if 5 =0.

Instead of supposing the quantities ¢, @ and o to be functions
of p and ¢, we may take them to be functions of ¢, u, v and w
where «, v and w are three parameters which individualize the
moving point.

This is Lagrange’s method, and Euler’s method is that in
which everything 1s expressed in terms of p and ¢t. The total
differential of ¢ we shall now write in the form, '

VI R ERC E
Dq_.atdt+audu+avdv+%d’w, veererieeen o XIL)

and following the moving point we have

-
Dyg= Tg creeeeemeeeneae (x11L.)
since u, v and w remain unchanged. In particular
_% 1.
a'—éz, D;cr-—— atz.
The vectors @ and & now become
Lol % .90 _yglp
T== vvv 300 =3 Vs 3E B0 oo (x1v.)

as appears on reference to (1v.). The appropriate form for V in
these relations is that given in Art. 128 (vL) or (x1v.). The
element of volume is now —Sp,p,p,dudvdw, and the voluminal
equation of continuity is simply (compare (IIL))

qu1p2p3 =CONSL. tiiiiiiiiiiiiieaaas (XV.)

Ex. 1. If ¢ is the density of a continuous distribution of matter moving
with the velocity o, Euler’s equation of continuity is

¢=8V(ca) or Dee=cSVo;
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and Lagrange’s equation is
— ¢8ppypy= C=const.

(a) Hence D,loge= — % log Spypaps =SV % =8Vo.

Ex. 2. Show that
g=6-08Ve, a=d-Va?- VoVVo=Dwo—-4V.0%

v Op
Ex, 3. Show that P —Va.

Ex. 4. In general
Voo +Vog =5, Voo +Vow =m's"+y’ where ©'=Vow.

[These relations follow most easily from (1v.).]

ART. 130. The integral
F= —jsadp ........................... (1)

taken from one point to another along a curve depends generally
on the nature of the curve: but if VV& =0, so that w=VP, the
value of the integral is simply the difference of the values of P
at the extremities of the curve. This integral may be called the
Jlow of the vector & along the curve.

The time rate of change of F as the curve moves with the
medium with velocity o is

DF=— j SEApy «rerrereeeersrrreinees (i)

and if this integral is independent of the nature of the curve,
#=VQ, 5—VaVVa=V(Sew+¢), Dw=V(Sew,+Q) (L)
are different forms of the condition to be satisfied, € being a
scalar function of p and ¢. Other forms of the condition are
VVg =0, VV5—VVVeVVa=0, VVD&=VV'VSea’; (1v.)
or again (Art. 129 (X.))
. o=0, where 0=VVa. ..., (v.)
As regards the third of (1v.), note that VV2Sezr,=0.
In general we have (Art. 129 (VL))
D,F= —js (&= VoVVD)dp—[Som], wrvrrenn. (vL)
and
DF= —jSﬁdpdt—jSVdeu—[Sam]dt, where dy=Vodpdt (VIL)

and where [Sgw] denotes the difference of the values of Sow at
the extremities of the curve. The expression for DF shows the
meaning of the various terms, dv being an element of the area
swept out by an element of the curve in the time d¢.
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In the case of a closed curve, the circulation of the vector =
in the curve and its rate of change are expressed by

0= —jsad,,, D= -jsgdp; ............ (v

or when @ does not become infinite at any point of a surface
drawn over the circuit, we may transform the cireulation into a
surface integral so that

0= —-ijdu, D= —jSQdy, 0=VVG. woreren, (1x.)

The circulation is therefore the fluz of the vector w(=VVx)
through the circuit, and the rate of change of the circulation is
the flux of the derived vector w (=VVg) or the circulation of 3.

For any small plane circuit, the circulation —SVVady is the
projection of VVz on the normal to the circuit into the area of
the circuit. Thus VV@ determines the aspect of the unit circuit
in which the circulation is a maximum, and it likewise gives the
magnitude of the circulation TVVew in that principal circuit.
In like manner » determines the aspect of the circuit in which
the rate of change of circulation 1s a maximum as well as the
value of that maximum.

The vector D,VVz determines the rate of change of the
circulation from one principal circuit to another following the
motion of the medium. A principal circuit does not generally
remain a principal circuit. We note that by (1v.) and by
Art. 129 (1v.)

0o=VVDo—-VV'VSesxy'=D,VVa-VVVsVV'%&; ...... (x.)
and in general we have
(DV-VD,).qg=V'8a'V.q,cccccvrirver vurnr. (x1)

because D,V.qg=V§—SasV.Vq, VDyg=V§—(V)SsV.q.

If a tubular surface, drawn through any circuit, is composed
of curves satisfying the differential equation

VVadp=0:.ociiiiiiiiiiiinnnn, (x11)

or, what is equivalent, if
SVady=0 ....c. v (XI11.)

over the tubular surface, the circulation in any evaneseible *
circuit traced on this surface is zero. In particular if ABC
and A’B'C’ are two circuits embracing the tube, the circuit
ABCAA'B'C’A’A is evanescible and also the circuit AA’A. From
this it follows that the circulation in ABCA is equal to that in
A’B'C’A’, being opposite to that in A’C'B’A’. Hence the circulation

* An evanescible circuit may be reduced to zero by continnous variation.
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is the same in all circuits drawn on the tube so as to embrace it
once.
The fluz of the vector & through a given surface bounded by

 given curve Js G= —jSadu, ........................ (x1v.)

and the condition that this should depend only on the bounding
curve is that the divergence of @ should vanish, or

SVG =0, coveveireiieiiiiiiiinnenns (xv.)
as we see by transforming the integral over a closed surface into

a volume integral.
The rate of change of the flux is

D,G= —ngdy, ........................ (XVL)

and the condition that this rate of change should depend only on
the bounding curve is

SV& =0 or SV&r—8(V)o. SVe =0, or (D;+m")SVez =0. (XVIL)

In any case in which SVa =0, if a tube is constructed of the
lines Vdpw =0 through a circuit, the fluxes across all sections of
the tube are the same, and the value of the flux is the strength
of the tube. For a small tube we have, if Tdy is the area of a
cross section and if dn is the strength,

TdyTm=dn, where SVa=0. ............ (XvIIL)
Ex. 1. If VVDwo=0, the circulation of the vectors ¢ in any circuit

moving with the medium remains unchanged.

[See (111.) and (1v.). We have D=V (3c?+¢).]
Ex. 2. Show that in Lagrange’s method
oV
D,V -VD)g= 3¢

ART. 131. In Art. 126 we showed that any vector & can be
expressed in the form (see (1v.), p. 220)
a=Vp, SVp=0), cccceeiiiiiiiiiin (1)
where p is a certain quaternion. We shall examine how this
quaternion is related to the flow and the flux of the vector .
In terms of p,

F= —jSadpz - j SVVVp. dp-+[SP] wovevernenns (i)

because ~S.VSp.dp=dSp. Hence for a closed circuit, the
circulation depends merely on Vp. If the circulation in every
circuit vanishes, the quaternion p reduces to a scalar, as we have
already observed. The circulation in general is expressible as

C= -fs. VVVp.dp= -js VIVp . dv. oo (TIL)
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We have also
D.F= —js (VVp—VSeVVp—oViVp)dp+[DiSp]; - (IV.)
and @ and @ are
&=Vp—VSaVp—VeViVp, t1=Vp—VVVaVp—aVi8p. (V.)
The flux is
G=— j Sody= - ISduV. sp—jsvpdp, ............ (v1)

since deuVVp:j-Sdep.

The flux through any closed surface depends merely on Sp.
Comparing (1) and (V1.) we see that Vp and Sp play a comple-
mentary role in these two relations. Various forms may be
found for D,G on which we cannot delay.
Replacing p by @ in the second form of the identity
(Art. 126 (1v.)), we obtain the expression
zs—-VJ- Va'dy ]‘ dv'e’
47T (p'—p) 47T (p'~p)
applicable throughout a given region, and this exhibits the nature
of the quaternion p of the present article. If there is no
circulation at the boundary, so that we may put @=Vg (where
Q is a scalar function) in the surface integral, we have on
replacing p by V@ in the identity already referred to
V2Q/de’ Vg
V= V,‘.‘}.‘TT'(_’;I ) ij 3 oeereesens (vIIL)
also putting p=¢ in the first form of the same identity and
introducing a new scalar function R,
_o_ [ VPQdv _ _ j SV & j‘ e
== [~V S —py )
Substituting for the surface integral from (vIiiL) in (viL) and
attending to the definition of R in (1X.), we find

. SVe' . dv VV'w'.dd
5=VP+Vy+VER if P_LTT(,),__p), 1= g (%)

Moreover R is given by (1x.) as a scalar surface integral depend-
ing on the values of Sdve and of € over the boundary, and
V2R =0 throughout the region. In this notation (ir) and (V1)
become

Fe— jSVndp+[P+R], G= —devV(P+R)—JSndp. (x1)

If =0, the distribution of the vectors @ is irrotational; if P
is zero there is no divergence and the distribution is solenoidal;
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if P and 5 both vanish, the distribution is irrotational and
solenoidal.

If,as in Art. 130 (xvIIL), dn is the strength of a tube of vectors
VVs of cross-section Tdw, and if dp is along the tube, we have

VVs.dv=VVs.TdeTdp=dpdn because dp || dw i VVo.

If the tubes form closed rings and if dv is the directed element of
a surface bounded by a ring, we find (compare (X.))

dp’dn j o 1 j dndy’
AV V' . e = VV | ol
j =TT —p) ST & (0 =p) 47T (p'—p)
or agam
_ dndy j‘ dndy J‘ Qdn
ﬂ—(V—SV)Im—V GT([;}’_TP’)'I' "E, ....(XII.)

where Q is the solid angle subtended at the extremity of p by
the closed ring of strength dn,

because de'VT(p' p)'l = Sdl/U(p' - p) . T(p' - p)'2 = —dq.

(See Chap. VIL, Ex. 22, p. 86.)
Hence at any point ou’cmde the vortex rings, i.e. at a point at
which p’ does not equal p, we have

Vy= L%TV Jan, 5=V(P+ f;jgdﬂ R)......(xm)

This well-known transformation is due to the fact that under
the supposed conditions a certain quaternion is reduced to zero
by the operation of V.

Art. 132. By means of the transformations
SVa=pSVo—5, pV(V)o=pVVe -2a,
pSp(V)m’ = pSpVZD’-I—thD’, prV(V)ZD’ = prVVZD’— 3me‘, . (I)

which may be verified without difficulty, we obtain the trans-
formations,

Iz:; . dv =J-pSVz;5 . dv—jdeym
= gjpvwz du— %ijdm ;
[vpu L du= —jpssza . dv+IpSpduw
=%j VoV —§Ipvpvciua. ........... (L)

Another transformation, likewise depending on the invariantal
properties of V, is

j Sww. dv= j spwdm—j(spwvaurspw'va)dv; (1L
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and by introducing p and V into any relation it is genera.lly
possible to find a transformation analogous to these.

Bx. 1. The momentum and the moment of momentum with respect to
the origin of vectors p of a portion of a continuous medium of density e,
may be thrown into the forms

A=[eodv=[pSV(co)dv - [cpSdvo=3}[pVV(ca). dv—} [epVdva,
n= [cho-dv =- IpSpV (ca)dv+ IcpSpdwr = HprVV (ca)dv — %Ichdewr ;
and the kinetic energy of the portion may be represented by
T= J} cTo’dv= -4 jcSpa’d vo+ _[c (SpaSVo +8SpaVVe)dv+4 ISpaVc«rdv.
(@) For an incompressible substance of uniform density, if 2¢=VVo,
= cja-dv = c[ﬁdeu-: cjpedv - écj'devo-,
p= cIVpadv =- 2ch pSpedv + c_[ pSpdvo=% prVped'v - ;!;c_[ pVpVdro,
T=4c[Todv= ~}c[Spodvo +2¢[Spoedo.
b Ex. 2. In the notation of Art. 131, the kinetic energy may be expressed
Y T'= -} [e(Snodv +(P+ R)Sodv) +3[e(P+ R)dv -} [SyV (o). dv;
and for an incompressible substance of uniform density,
T= - }of(Snodv+ RSedv) ~ c[Sedn,
and the volume integral is

See'dvdy’
I Snedv= f T (o= py

(vii) Equations of motion of a deformable system.

ART. 133. For any system of particles the equations (compare
Arts. 119 and 120, p. 194)

M. D=1, D,J.V—r'f T (1)

are independent of the mutual reactions of the particles com-
posing the system, M being the total mass, o the velocity of the
centre of the mass, + the vector from the centre of mass to the
particle dm, X the resultant force and u the resultant couple
referred to the centre of mass.

Suppose the system of particles to compose a definite portion
of a distribution of matter, and let each particle dm be acted
on by a force ¢dm and a couple ndm due to external causes.
In addition the portion of matter is subject to the interaction
between it and the rest of the matter. The forces of the
interaction on the portion may be supposed to be the resultant
of a number of forces dv acting at each point of the boundary
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of the portion, and ®dy is a linear function of the tensor of dv—
the vector element of the surface. Moreover if ¢ is the density,
we have dm=cdv, where dv is an element of the volume. The
equation (1.) therefore may be replaced by

Do . jcdv:jlcfdv+_‘-<1>du; e (i)

and D, . jV-r-}-  edv= jc(,,+ Vrg)do +IVT§dy; ......... (1)

and the volume integrals are taken throughout the selected
portion while the surface integrals are taken over its boundary.
When we take the portion of matter to be small, the volume
integrals in (11) are ultimately of the third order of small
quantities and the surface integral is of the second order.
Provided therefore D,o is not excessively large for very small
portions and provided ®dv is a continuous function of the
vector-element of surface dv, the surface integral must vanish
independently of the volume integrals when the dimensions of
the portion are greatly reduced; and if the portion is taken to be
a tetrahedron whose vector faces are proportional to a, 8, ¥ and
6, we see that the function $dv at any point must satisfy the

condition
P(a+B+y)=Pa+PB+Py .ccoerrnnnn (1v.)

for all vectors a, B8 and v, because we have for the evanescent
tetrahedron ®q+ PR+ Py+PS=0, where a+B+y+35=0. Thus
& is a linear and vector function. We may therefore apply the

integration theorem of Art. 125, Ex. 2, and replace |®dy in (IL)
by the volume integral J.<I>V.dv, in which V operates on &

wn sttu. Thus we have

Do jcdv=j(cg+q>V) 0 PR v)
and when we reduce the portion, we find in the limit
Die=£¢+¢ 1. BV, veeenn(VL)

where D, is the acceleration of the centre of mass of a small
- portion of the matter.
Applying the same principles of continuity and of dimensions
to (111.), and taking the portion of matter to be a small parallele-
piped whose edges are parallel to a, 8 and vy, we find

—epSaBy+ Va<I’V,3‘y +VBPVya+ V'y@aﬁ =0;
or simply (Art. 67, Ex. 7, p. 97)
n+2e=0, coiiiiiiiii (viL)
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where e is the spin-vector of ®, as we see more easily by putting
2, J and k for a, 8 and y. Provided there is no voluminal
distribution of couple, the function & is self-conjugate.

The equation of continuity is

¢=8V(ca) or —cSp;paps=0C, . ceviiiianinnis (vIiL)

according as we use Euler’s or Lagrange’s method (Art. 129), and
by Art. 128 (vL) or (XIV.) we may replace (v1.) by

7 2 ? 2
aié): £+ Cd(é;, . @Vp2p3+a_v . ®Vp.p, +87’w . <I’Vp1p2>. ...(IX.)

Ex. 1. Find the equation of motion for a perfect fluid.

[The force $dv on the boundary of a portion of the fluid is —pdv, where p
is the pressure, remembering that dv is outwardly directed. Hence the
equation is Dir=§ —¢"'Vp.]

Ex. 2. Integrating along a stream line, show that

1To?+ [S(¢+c'BV)dp
is constant for an element of the matter, and find the integral in the case of
a fluid acted on by conservative forces.

Ex. 3. When the forces acting on a perfect fluid are conservative, the
circulation in any circuit moving with the fluid remains unchanged provided
the density is a function of the pressure.

[We have Dio=-V(P+ .[c“dp). See Art. 130, Ex. 1. An independent
proof is easily obtained by Lagrange’s method, which gives
B 0[O, [P 0p 1 Op
D F= —thSa'dp— —afsa dp= —fagdp—fad 5%

and if this vanishes for all closed circuits VVDwor=0.]

Ex. 4. If F= - [Sodp, show that
DeF= — [S(§+¢7'@V)dp+3[To?].

ART. 134. To determine the nature of the stress-function ®
for a viscous fluid, we assume as usual that the stress consists of
a hydrostatic pressure and of a part linear in the rate of dis-
tortion of the fluid, and that the stress-function is coaxial with
the strain-function. In the notation of Art. 124, the strain-
function is 3(¢+¢"), and the general linear function coaxial
with this function and linear in its coefficients is of the form
n(¢p+¢)+n'm’, where n and n’ are constants and where
m'(=—SVes) is the first invariant of ¢ or ¢’ or (¢p+¢").
Consequently the stress-function is of the form

Pa=—pat+n(¢p+¢latnma, ...cooiiniinin, ()
a being an arbitrary vector and p being a hydrostatic pressure.

The hydrostatic pressure is defined more particularly (with

changed sign) to be the mean of the principal stresses, or

—3p=M"=—-38iPi=—3p+(2n+3n")m".
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Hence the coefficients n and n” are connected by the relation

2430 =05 i (L)
and finally in terms of V (Art. 124, p. 211),
$a= —pa—n(SaV.c+V.Sas)+3inaSVe. ... (1)

If n does not vary from point to pbint of the fluid, the equation
of motion becomes

Die=£¢—c¢ 1. Vp—c (Ve +3VSVs); .o v.)

otherwise if m varies, it must undergo operation by the V which

replaces a.
In like manner for an isotropic elastic solid, if 6 is the

displacement,
$g=—n(SaV.0+VSaf)—n'aSVE, ............... )
assuming that the stress function is coaxial with the strain-

function and linear in its constituents. The equation of motion

becomes
D28=¢—c V0 —c-i(n+n)V.SVO............. (VL)

ART. 135. The rate of change of kinetic energy of any finite
portion of the matter is

Dtj§cTa2 dv= DJ%TH .dm

- _jsqn,a. dm= —jsao(cg+ BV)dy, ....(1)

and in the last integral V operates on & but not on o as indicated
by the suffix. Because Sc®V =S, @V +Sc®,V, where V operates
on the unsuffixed symbols, we may integrate by parts, and we find

Dtj%cTa-a Ldv= —IcSa-f. dv +jsa<1>0v . dv—jsa@dy, (1L)

where dy is an outwardly directed element of the boundary of

the portion of matter.
For comparison we give the expression for the rate of change

of kinetic energy in any region fixed in space. It is

%j%cTaz . do= .[%éTojd’U b ICSG’G" B dv

=j 1T 28V (ca) — Sy VSoryr v — J-So-o(cf-l- &V)do,

on making substitutions from the equations of continuity and of
motion.



240 THE OPERATOR V. {cHAP. XVI.

Now ~8Sa, VS = +Sa,V.3To? and the first integral changes
at once into a surface integral so that

d 2
(th%cTa .dv
- j 3¢To®. Sedy— j ¢So. dv+ISo-<i’0V. dv— JSo"I’dV, ..(IIL)

transformation of the second part of the integral being as before.
The difference between (1L) and (1i1.) is due to the influx of
matter through the boundary. ‘

The first integral in (IL.) is due to the activity of the applied
forces ; the third is due to that of the surface stresses; the second,
with sign changed, gives the rate at which energy is stored in
the medium or dissipated.

ART. 136. In the case of a viscous fluid, the rate of storage
and waste of energy per unit volume is (Art. 134 (11L.))

—S¢®,V = pSVe+n(SVV'Sgs’+SVa'SV'e) - 4n(SVa) ...(1)

By the aid of the equation of continuity (Art. 133 (VIIL)) the
term in p may be replaced by

pDlogc= D,jpc‘ldc - _D, j pb1db, v, (L)

where b is the bulkiness, the reciprocal of the density ; and for a
given mass the rate of change of the intrinsic energy is

jpsva Ldv= —IpD,bdm: —D,jdmfpdb. ......... (L)

The part quadratic in o is called by Lord Rayleigh the
dissipation function, and it measures the rate at which energy
per unit volume is wasted by the viscosity. This depends on the
distortion, and it is expressible in terms of the elongations
e,, ¢, and e;—the latent roots of the function ¢,=4}(¢p+¢") of
Art. 124.

The invariant m’ of ¢ is (Art. 124 (viL), p. 213)

m = = SVVV'Vgg’' =1SVaSV'e’' — 1SVe'SV's ;
also we have ‘
42=VVs2=SVVsVV's'=SVs'SV'e—SVV'Seq’;
and from these two expressions we get '
SVV'Saa’ +SVe'SV'a = — 4e? — dm/+ 2m"
since m’ = —S8Vg=—SV’s". Thus _
2F =n(SVV'Sac’ +SVe'SV'a— 38Ve?) = 4 n(m"*— 3m’ — 3e?). (1v.)
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But (Art. 68, p. 98) the invariants of ¢, are
m'=e,+e,+e; and m’'+et=e,0,+e56,+ €0,
and therefore
F=n{(e,— e +(eg—e,) +(e;— €)%} ovninninnnnen. v)
Hence it follows that if the dissipation function vanishes the

distortion of any element must be a uniform dilatation or con-
traction, for the conditions are

€] =€y =Ca irininiiiiniiiiiaas (Vi)

Ex. For a dynamical system consisting of a solid and a fluid, the
momentum and the moment of momentum of the system referred to the
centre of mass of the solid are given by

A=Mv+ Itrdm, p=dw+ IVpo-dm,

o being the angular velocity of the solid, v the velocity of its centre of mass,
¢w the moment of momentum of the solid, p a vector from the centre of
mass of the solid to an element dm of the fluid which is moving with
velocity o

(a) In general (u, A) is the resultant wrench of the system of impulses
which would generate the motion, and if the motion of the fluid is due to
that of the solid, A and u are functions of v and w ; but if the motion can be
generated by applying the wrench to the solid, it follows from Newton’s law
of the composition of velocities that A and p are linear functions of v and o,
or that (p. 208, Ex. 12)

A=dut+ oo, p=ev+Pgu,
where ¢, b, P, and ¢ are four linear vector functions.
(b) The work done in altering v and o to v+dv and w+de is
‘ dW=—SAdv-Spdow ;

and if the dynamical system is conservative, so that d W is the differential of
a function W of v and e, the functions ¢, and ¢; must be self-conjugate and
¢,/ must be the conjugate of ¢,.

(¢) In the case of a perfect fluid, the velocity generated in this way must
be irrotational, and assuming that o, as well as A and g, is a linear function
of v and o, we must have

a=V(Svf+8wf),

where 6 and ¢ are vector functions of the vector p.

(d) In the case of a solid moving in an infinite liquid of uniform density,
or of a solid containing a cavity filled with liquid, the functions 6 and ¢
must satisfy

V20=0, V=0
throughout the liquid. And at the surface of the solid in contact with
the liquid
S(v+ Vap)dv=8dvV. (Svf+Sw(),
so that 6 and ¢ must satisfy the surface conditions

dv=8dwV. 6, Vpdv=8SdvV.(
J.Q Q
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(¢) In this case we may replace the expressions for A and p by
A=My+e[dv(Sv+8uf), p=do+c[Vpdr(Svh+Suf);
and by the aid of the conditions which 8 and ¢ satisfy, it may be shown that

[dvSab=[SUV'. 6808 . dv, [VpdvSai=[SVV'. (Sa¢'.dv,
(VpdvBaf=[SVV'. (Saff . dv,  [dvSaf=[SVV'.f8a¢ . dv,

so that the conditions (b) are satisfied. Also the functions ¢,, ¢, and ¢
depend on the nature of the solid and on the density of the liquid, and they
are invariably related to the solid.

(f) If the solid is acted on by an applied wrench (3, £) referred to its
centre of mass, the equations of motion, analogous to Euler’s equation for a
rigid body, are

PV +oiv + Vor(dv+ ¢2“’):£’
D20+ Pair + Vo (P v+ dy0) + Vo(pru+ dyw)=n,

the second equation being obtained by expressing that the rate of change of
the moment of momentum (u+ VyA) with respect to a fixed point is equal
to the moment of the applied forces (4 Vy£) with respect to that point.

(9) When there are no applied forces obtain and interpret the integrals
T(pv+ ppw)=const., S(P,v+ Pyw)($y'v+ Psw)=const.,
7 Sv, v+ 28vyw + Swdym = const.
(%) When the linear momentum is constantly zero,

(35— PP b+ Vo(ds— by po=n, v=—; "ps0,

and the angular velocity is that of a certain solid moving round a fixed point
under the action of the couple 7.

(@) For a steady motion of translation under no forces Vughv=0; and in
general for steady motion when o does not vanish
v=—¢ "+ 7)o, Vold;—(¢) +2)b (P +2)]e=0,

where x is a scalar. From this it follows that the axis of the screws of
steady motion are parallel to edges of a sextic cone, and in general to each
edge of the cone corresponds a single screw.

ArT. 137. In terms of the displacement 6, the equation for
an elastic solid is (compare Art. 134 (v1.))

D0 =£+C"1BY, coovroreeiiareienan, (1)

the velocity o being 0 and P being a self-conjugate function
because there is no voluminal distribution of couple. The
displacement 0 is a function of the time and the position vector,
and when the strain is small we may neglect the term —S6V.0
in D20. We replace, in fact, D20 by the second derived of 6
regarded as a function of ¢ alone, that is by 6. Observe that
now V is commutative in order of operation with the result
of differentiating with respect to the time. '
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By Art. 135, the rate at which the forces work in storing and
dissipating energy is the integral

V= — j SOBLY AV wvevrrereerrnrerenens (i)

taken throughout the body. By Hooke’s law, stress is a linear
function of strain. If the strain is multiplied by =, the function
$ is likewise multiplied by m. Suppose the strain to be
gradually increased from zero so that at any stage the strain is
7 times the final amount where n is positive and less than unity.

In this case (IL) becomes W= —'iijO@oV.d'v ; and integrating

between the limits 0 and 1, the total work done in producing
the strain in this particular way is seen to be

W= —%jseq%v I AT (uL.)

If the work done is a function of the strain and not of the
manner in which it has been produced, the function W is the
energy function—a quadratic function of the strain, and the work
done in altering the strain in any arbitrary manner is the
difference of the values of the energy function corresponding to
the final and the initial state.

When the energy function exists we see on comparison of (IL)
and (11L) that in general for any two sets of strain answering to
the displacements 6, and 6,, we have

jSal<§2V1.d0=jS¢2§1V2.dv. eeeee e (V)

In fact the theory is quite analogous to that of the linear function
in the quadratic expression Spgp. If dSppp=28dpgp the
function ¢ must be self-conjugate, and Sp,pp,=Sp,¢p, for all
vectors. Conversely, if (1v.) holds good for all pairs of strains,
the energy funection exists.

The quaternion statement of Hooke’s law is the function ® is
linear in the constituents of the self-conjugate function

doa=}(p+¢)a=—1(SaV.0—VSaf).

In other words, ® is a linear function of V and of 6, which is
unchanged when # and V are interchanged, V operating in sifw
on 0. Thus if « is an arbitrary vector free from the operation
of V, Hooke’s law is contained in the equation

$a=06(a, V,0)=0(a, 8, V), errreerrieinninnnn (v.)

where O is a linear function of a, of V and of 6.
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In case the energy function exists
86,8,V,=86,0(V,, V,, 6,)=50,0(V,, 6,, V,)
=8560,8,V,=S860,0(V,, V,, 8,)=86,0(V,, 6,, V). ...... (vL)

But we have already shown that ¢ is self-conjugate, so we may
equate the expressions (V1) to the new expressions

Svl‘I’zel = SV16(91’ Vza 92) = SV19(617 62: Vz)
=8V,$,0,=8V,0(6;, V,, 0,)=SV,0(6;, 6;, V). ......(VIL)

‘We may sum up the whole matter in the following statement:
writing for four arbitrary vectors

(a, B, v, )= —8aO(B, v, 6), c-ervueenrennnn. (VIIL)

the fact that & is self-conjugate allows us to interchange the
positions of a and B; Hooke’s law permits the interchange of y
and ¢; the existence of the energy equation renders the pair
a, 3 interchangeable with the pair v, 6.

For any system of mutually rectangular unit vectors, 4, j, k,
we obtain from (V.) six self-conjugate vector functions (of a),
O(a, i, %), O(a, 4, J), O(a, k, k), O(a, J, k), O(a, k, 2), O(q, 4, ), (IX.)
with permission to interchange the positions of the second and
third vectors. The thirty-six constituents of these functions are
the thirty-six elastic constants in case the energy function does
not exist. When the energy function does exist, the number of
constants is at once reduced to twenty-one; three of the type
@, 1, 4, 1); six (4, <, ¢, J); three (4, 4, j, j); three (4, 4, %, j); three
E Js k,)’i, 1) and three (J, ¢, k, 1), using the notation indicated in

VIIL).

To exhibit clearly the meaning of these constants we shall
employ a special notation for the strains. Let 0=tu+jv+kw
and p=izx+jy+kz; let ’

ou ou o

Sii=a—m, etc.; Sij=8ji=@+a—x. .................. (X.)
Then the stress across a directed area a arising from the strain s;
is O(a, 1, 1)8s, and that arising from the strain s; is 6(a, 1, j)s;
The symbol (ijki) represents the component of the stress across
unit area j parallel to ¢ due to unit strain of the type s;; and
when the energy function exists this is equal to the component
parallel to & of the stress across unit area + due to unit strain of
the type s;.

Ex. 1. Show that the energy function is of the form
Y2 ® + Z () 8usy + 3 Z(Gi) 51 + 2(LE) st
+ 2‘ (Zl’lj) 8i8y + 2 (i?;]k) 8iiSix.
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Ex. 2. Determine the reduction in the number of the elastic constants
when the substance posseses a plane of symmetry.

() If the substance has two mutually rectangular planes of symmetry,
the plane at right angles to both is a plane of symmetry.

[Reflection with respect to a plane of symmetry leaves the elastic
properties unchanged. If £ is normal to the plane, the constants whose
symbols involve £ an odd number of times must vanish. Thirteen of the
twenty-one constants remain. When the substance has two planes of
symmetry, at right angles to j and to &, only symbols of the types (z2i%), (i1jf)
and (4j%) remain, and hence the plane normal to ¢ is also a plane of
symmetry.]

Ex. 3. If the elastic constants referred to 7, j, # remain unchanged when
the axes of reference, ¢ and j, are turned through two right angles round £,
the plane perpendicular to £ is a plane of symmetry.

[In this case change of ¢ and j into ~¢ and —j must leave the symbols
unchanged.}

Ex. 4. Determine the conditions that the elastic constants may remain
unchanged when ¢ and j are rotated through a finite angle » round #.

[If @ and B are the vectors obtained by turning ¢ and j through an
arbitrary angle « round #, the functions of w, (kkka), (kakf3), ete., must be
periodic functions of » for the period v or else reduce to constants. These
functions can be expressed as sums of sines and cosines of u, 2u, 3u and 4u
together with constant terms. Hence the only admissible values of v are
m, §m or 4m. In every case the symbols involving % three times must
vanish. We have already considered rotation through two right angles. For
rotation through 4=, the symbols linear in £ must also vanish, and changing
vand j into +7 and —¢ respectively must leave all symbols unaltered. Thus
(Rkis)=(kkjj), (kkif)=0, ete., and (:1%)+ (i) =0, (#i7)=(4jjj). For rotation
through = the functions of u independent of £ or involving k twice must
reduce to constants. We find in addition to the conditions satisfied for
rotation through one right angle that (¢@)=(jjji)=0, (i1i)=(:ijf) +2(5j5)).
Expressing that (faaa), (Fauf) are functions of cos3u and sin3u, we get
—(iiii):(lcjz";’)=(/cyj), = (ki) =(kiji)=(kji¥). For rotation through an
arbitrary angle the symbols linear in # must vanish and the conditions for
v=2%r must hold.]

Ex, 5. When the energy function exists prove the existence of a
self-conjugate function ¢ for which the relation
. O(o, B, )-6(B, a, V)=V .$VafB.y
is identically true.

(a) The axes of ¢, when determinate, form a natural system of lines of
reference, and where a plane of symmetry exists, it is normal to an axis.

[The function on the left is obviously a linear function of Va83. Operating
by S8 we have

(8af3y) = (8Bay)=(Byda) ~ (Bdya)= - 8VydpVaf = ~ SVaBpVys,

and as this is a symmetrical function of Va8 and of V38 the self-conjugate
character of ¢ is established.

For an arbitrary set of mutually rectangular axes, we have

0@, 7, ¥)-06(4, 7, ¥)=Vok . ¥, etc.,

whence it follows that if 7, j and £ are the axes of ¢, the vectors are
completely permutable in O(z, j, £), so that (k) = (ijik), ete.

We easily find -85l =(f¥) ~(057K), —~Si'dps’=(J'kF) - (j7H¥), s0
that if % is normal to a plane of symmetry it is an axis of ¢.
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If e, ¢,, e, are the latent roots of ¢ we have in terms of the axes
ey=GhIR) — (Jjkk), ey=(kiki) — (kkii), &= (44f) = (i77f)-
Given the constants referred to axes ¢, 7/, # we can on transformation to the
axes of ¢ determine whether there are planes of symmetry or not.

In general putting p=zk+ra, where a=icosu+j sinu, we have the
expansion
(pppp) = AREEE) + 42°r (kkko) + 2277 { (Rhaa) +2 (baka)}+ 42r3 (kaaa)+rt (coaa),
and when 7, j and k are axes of ¢ we have also

(kaaa)=(kiit) cos®u + 3(ki7j) costu sin u+ 3(kijj) cos u sinu + (kjj) sin®u
because the letters in a symbol involving %, j and & are completely permutable
for this special set of axes. Hence it follows that a plane z=0 which is a
plane of symmetry of the quartic (pppp) and of the quadric Spgp is a plane
of elastic symmetry. The coefficients of the powers of cosu and sinw in
(kkka) and in (keao) must then vanish, and by the special laws of interchange
every coefficient of odd order in £ vanishes.

Suppose now that the plane Sjp=0or u=0is a plane of symmetry. The
coefficients of the powers of z must be functions of cos« alone. Thus

(pppp) = 2a+42°rb cos u + 62%r%(c cos 2u+¢) + 4213(d cos 3u +d' cos w)
+74(e cos 4u+ ¢ cos 2u +¢")

suppose. If the plane u=v is also a plane of symmetry, this function must
be independent of the sign when we put w=v+w, Where v is arbitrary.
Hence bsinv=csin 2v=d sin 3v=d sin v =esin 4v =¢ sin 20=0,

and unless the quartic is a surface of revolution, the only admissible values
of v are 1w, krand 1. Hence planes of elastic symmetry must intersect at
angles of 90°, 60° or 45° if every plane through their intersection is not a
plane of symmetry. Of course in the second and third cases, the quadric
Spep is of revolution. There is no difficulty in writing down the elastic
constants for each case.

Suppose two roots of ¢ to be equal so that there are indeterminate
axes in the plane of 7 and j, and that it is required to find a natural system
of lines of reference. We may equate to zero the derived with respect
to u of the first of the coefficients (kkka), (kkaa)+2(kake), (kaaa), (acaa)
which does not vanish. Determining » from such an equation we take
{cosu-+jsinu and jcosu—isinu along with £ as the natural axes of refer-
ence. The case in which ¢ reduces to a constant will be considered in the
next example.]

Ex. 6. When the energy function exists,
_%VZ -6(n, py P)=Ee (py 1, i)+229 (@ 7, p)=1hap,
is a self-conjugate vector function invariantally related to the elastic
structure.
[The function is invariantal because VZ is an invariant operator inde-
endent of any particular choice of 7, jand £ If a plane of symmetry exists,
it is a principal plane of this function, because if £ is normal to a plane of
symmetry, Si,k and Sj,k both vanish, being of odd order in k. Therefore
k is an axis of ¢y, and ¢, and ¢ of the last example have a common axis.
In terms of the axes ¢, j and £ of the last example, it is easy to see that
~ Sihgi =3 (dax) + 2(ey+e5), —Sidhy =32 (Jaa),
where a stands for 7, 7 and % in the summation.

The axes of this function may be used as natural axes of reference when
the function ¢ of the last example reduces to a constant e. In this case for
arbitrary axes, 4, j and k are completely ermutable in any symbol in which
they all occur, and (jkjk)=e+(jjkk), etc.ﬁ
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ART. 138. In the notation of the last Article, the equation of
vibrations of an elastic solid, not acted on by voluminal forces, is

c0=0(V,V,0), ceererrrrrreeeeeeeaarennns (1)

where, as we have said, 6 is the second partial derived, with
respect to the time, of 6, which is a function of ¢ and p.

Consider the propagation of a plane wave. If the vector v
represents in magnitude and direction the wave-velocity, the
equation of a wave-front is

u=t—S§, ................................. (L)

for this represents a plane moving at right angles to itself with
velocity v. Over a wave-front, the displacement from the mean
position is, by definition, the same at every point at any given
time. In other words 0 is a function of w and of £. Hence

__yse ¥ _1 00
Vo= Vsu'au—u'au,’
and generally if £V is a homogeneous function of V of order =,

£90=f() T (ir)
In particular (1.) becomes for plane wave motion

. 1 1 2%

60=6<;, -l;, —,6—1;2> ...................... (IV.)

If the wave is of permanent type, 6 involves ¢ only as involved
in w, and if in addition the vibration is harmonic and of

frequency p, . %0
= a—u2 = —p20 ........................... (V. )
In this case (1v.) becomes
O(UCv, Uy, 0)=cOTv% ..cocoviiiiininnns (vi)

This shows that for a plane wave propagated in the direction
Uy, the vibration 6 is parallel to an axis of the linear vector
function* ©(Uv, Uy, a), and that the velocity is the square root
of the quotient of the corresponding latent root by the density.
The solid admits of three plane-polarised waves propagated in
the same direction with different velocities. The wave-velocity
surface is determined by the equation

S {6 G}, %, a) - Ca} {9 (%, %, B> - 0,8} {9 <%, 11—,, y> - C‘y} =0, (VIL)

which is equivalent to the latent cubic of the function
6(Uy, Uy, a).
* The function ©(Uv, Uy, a) is not one of the functions O(e, ¢, ¢) of the last

Article. The second and third vectors may be interchanged in these expressions,
not the first and second.
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When the energy function exists, the linear function
O(Uv, Uy, a)

is self-conjugate because we have by the law of interchanges
(Art. 137 (viin)), SBO(Uv, Uy, a)=S«O(Uy, Uy, B). In this case
the vibrations 6,, 0,, 8, for any direction of wave propagation
are mutually rectangular. Moreover, since the function W is
essentially positive, the latent roots of the function © are positive
as well as real, and there are therefore three real wave-velocities
UvTy,, UvTy, and UyvTy; in any direction.

When a linear function has indeterminate axes, the v function
of ¢—g vanishes where g is the repeated root (Art. 66). The
condition for indeterminate directions of vibration is therefore

V{G(%, %, a>—0a}{9(%, %, ﬁ)—cﬂ}=0, ...... (viiL)

where a and 8 arbitrary vectors.

This equation admits of a finite number of solutions (v), which
correspond to Hamilton’s internal conical refraction. These
vectors terminate at double points on the wave-velocity surface.

The index-surface (MacCullagh) or the swrface of wave-
slowness (Hamilton) is the inverse

S{6(u, u, a)—ca{O(u, p, B)—cBHO(k, u, y)—cy}=0...(1x.)

of the wave-velocity surface (ViL), the vector u being equal
to —v-L
The wave-surface, or the surface of ray-velocity, is the envelope

of the plane p
S;:l or Sup=—1, .ciciiiiiiiiiiinan, (x.)

subject to the condition (VIL) or (1x.). That is, the wave-surface
is the reciprocal of the index surface with respect to the unit
sphere p>+1=0; or it is the envelope of plane wave-fronts in
unit time after passing through the origin; or it is the wave of
the vibration propagated from the origin in unit time; or the
vectors p which satisfy its equation represent in magnitude and
direction the ray-velocities.

When the energy function exists a simple and remarkable
expression may be found for the ray-velocity p in terms of u
and 6. The wave-surface may be expressed by elimination
between

(i, p, 0)=ch, dO(u, u, 0)=cdb, Sup+1=0, Spdu=0....(X1)
The second equation is in full
O(du, u, 0)+O(u, du, 6)+6(u, p, d9)=cdb;
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and operating on this by S6 and attending to the law of inter-
changes (Art. 137 (vIIL)),
28du6(0, 0, u)+Sd0O(u, u, 6)=cS6d0;
and by (XL) this reduces to
' SduO(8, 8, u)=0.

Thus every du is perpendicular to 6(6, 6, ») and also to p, so
that 6(6, 6, u)=up where z is a scalar. Operating by Su we
find —2=SuB(6, 9, u)=S00(u, u, 0)=ch? and therefore

O(UB, Ub, )=0Cp. eevvvvvininiiiinininanns (x11.)

Further, if we operate on this by Su and on the first of (XL.)
by SO we recover the relation Spu+1=0; so that all the
relations connecting U6, u and p are comprised in the two
relations

O(u, p, 0)=cO, O(UB, U, w)y=cp. cevvvvennnn. (X1IL)

(viil) Electro-magnetic Theory.

ART. 139. The fundamental circuital laws of the electro-
magnetic field are*

(L) the eirculation (—jS;ydp) of the magnetic force () in any
closed circuit is equal to the flux <—a Sydv> of the electric

current () through the circuit divided by the velocity of light
(w) in free space;

(IL) the ecirculation, with changed sign, (+ISedp) of the
electric force (¢) in any closed circuit is equal to the flux
<—%J‘Sy/du> of the magnetic current (v,) through the circuit

divided by u.
These laws are symbolized by the relations

Is,,dp=1jsydu, jSedp= —Hsy,du; ............. ®

u
and because it is implied that the fluxes of the vectors y and ,

through the circuit are independent of any particular surface
bounded by the circuit (Art. 130 (xv.)),

SVy=0, SVay,=0. .covrerrererirerrnens (1L)

*We cannot delay to explain the units employed in this article. Full explana-
tion will be found in the article by H. A. Lorentz on Maxwell’s Electromagnetische
Theorie in Bd. Vy, pp. 63-144, of the Encyklopidie der mathematischen Wissen-
schaften. These units are but slightly modified from Heaviside’s rational units.
Much use has been made of Lorentz’s article and of Heaviside’s work in the
preparation of the account of the theory given in the text. :
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We proceed to define more particularly what is meant by the
electric and magnetic current fluxes and by the electric and
magnetic forces in these laws. The electric current flux through

the circuit consists in general of three parts, the flux (*jSLdV)

due to the conduction current (), the rate of change (-——D,jSédu)
of the electric displacement (8) through the circuit, and the flux
(——jeSudv) due to the convection current (ev) where ¢ is the

density of electrification* carried through the circuit with
velocity v. In like manner the magnetic current is due to the

rate of change (— D,IS,Bdu) of the magnetic induction (3) through

the circuit, to a conduction current () postulated by Heaviside,
but probably non-existent, and to a convection current (ey,)
where ¢, is the density of magnetification carried through the
circuit with velocity v, On the whole the integral fluxes are

~ [Syav =~ D.fsots~ [Sudv o5,

-jsy,dy= —Dtjs,edy—js,,dy—je,su,dy. eeeeeeo(TIL)

In the rate of change of the displacement through the circuit we
must take account of the motion of the circuit which we suppose
to move with the velocity o, varying from point to point. We
have therefore by Art. 129 (11L.), p. 229.

ISydy = IS(@ + i+ ev)dy, .‘-S‘y,du = IS (@ H¢,4euv)dy, ...(AV.)

where §=8—VVVg6—a8VS, B=B—VVVaB—0SVA. .. ..(v.)

Converting the line integrals in (1) into surface integrals and
expressing that the relations hold for every possible small circuit
dy, we arrive at the differential equations of circuitation

anzlli(é_*_l_*-el/), VVe= —%(§+41+6/u,). ceene (VL)

We have not yet explained the meaning of the vectors ¢ and #.
The total electric and magnetic forces at a point consist of
impressed forces (e; and #;) together with ¢ and . Thus if ¢ and
n: are the total forces,

e=cte, W=RFR5 eiiiiiiiiiiii. (viL)

* This is not electrification of the medium. It is due to charges of electricity
carried by moving particles, for example.



ART. 140.] ELECTRO-MAGNETIC EQUATIONS. 251

and Lorentz further divides the impressed electric force into a
part e, co-operative with e in producing the conduction current
and a part e, co-operative with e in producing the displacement.
We shall write
=€+ €ict € M= RieF by ceeeeieiiaannns (viIrL)
where the suffix i calls to mind that the force is impressed,
¢ that it relates to conduction current, d to displacement and
b to magnetic induction (8).
Expressing that the conduction currents are produced by the
foreces enumerated, we have
(=®(e+ei), =P+ n); UTTUDROURURIURIRN ¢ 5.9 |
and by Ohm’s law in the case of isotropic media $ is a scalar—
the conductivity—and for anisotropic media & is a linear vector
function. Similarly we suppose the postulated function &,
corresponding to the postulated magnetic conduction current vy,
to be a linear vector function.
In like manner, expressing that the displacement (8) and the
induction () are due to the forces mentioned,
S=¢(etea) B=¢ntnm) covveerrinneennes (x)
The phenomena of hysteresis shows that ¢ and ¢, are not
always linear functions of the forces, but we shall only consider
the important case in which they are linear functions. For
isotropic media, ¢ is the (scalar) dielectric constant and ¢, is the
magnetic permeability. '
Some little care is necessary in differentiating these expres-
sions when the medium is in motion. Owing to the motion ¢
may change its value at a point fixed in space.

ART. 140. The activity of the impressed electric and magnetic
forces with reference to a small element of the medium of volume
dv 18

A dv=—(Seict+Snict, + Seiad + SnuB)dv
= —(S®-1+S,®, 1, +84p 6+ SB¢, 1B)dv
+(Se(§+0)+Sn(B+1))Av, v (1)

transformation being made by (1x.) and (X.) of the last article.
Transforming again by (V1) we find

Adv=—(S® 1 +Sup, 4, +S¢~16+5B4,78
+ eSev+¢,Syu,+ uSVVey).dv, ........ (11.)
because we have —SeVVy+SyVVe=8V Ve

The electric and magnetic forces evoke mechanical forces, £
per unit volume, and the stress ®,dv across the directed element
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dv. If the element moves with velocity o the activity of these
forces on the element is

4, dv=—(Sof+8cP(V))dv, .cc.vivvinn (111.)
the last term, in which (V) operates on ®; and on & in situ,

being equal to the surface integral —J‘Sa-q?gdu over the element.

The total activity Adv=(A,+A)dv ..o, av.)
is equal to the rate of transfer of energy to the element.
The term J= =8P L—8 P, Y, i (v.)

is by Joule’s law the rate of waste of energy per unit volume
owing to the conversion of energy into heat by the resistance.
The terms in this expression for the Joulian waste are analogous
to the dissipation function of a viscous fluid. The term
eSev+e Sy, relates to the convection currents.

The work done in increasing the electric displacement by the

amount d¢ is
—Sewdd= —S(e+eiq)dd=—S¢-14ds, ............ (vL)

where eq is the total electric force operative in producing the
displacement. (Compare (viiL) and (X.) of the last article.)
Experiments on dielectrics show that an energy function exists,
or in other words the work done is the differential of the function

W=— %S(?gb“& = — %Sema = — %Set(ﬂ)em, .......... (VII.)
which represents the energy stored in unit volume of the medium
and due to the electric force. From the existence of this energy
function we infer that ¢ is self-conjugate. A similar result

holds good for the magnetic induction, and the energy due to
this cause is

W,=—3S8¢,"18= —§SnuB=—Snad s ...... (VIIL)

The energy stored in unit of volume due to electric and mag-
netic forces is the sum of Wand W,.
When the medium is at rest the total activity is (1r.)

Adv=(J+ W+ W,—eSev—e,Sn, —uSVVe)dv, ......(Ix.)

because in this case § and 8 must be replaced by § and 5. We
have accounted for every term except the last. This by a pro-
cess of exclusion represents the rate of radiation of energy from
the small volume. It may be expressed as a surface integral,

—uSVVeq.dv=—uIdeVeq,...........‘ ....... (x.)

and this is the total outward flux of the vector uVey, the vector
area dv being outwardly directed as usual. This vector is the
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Poynting vector —discovered independently by Professor Poynting
and Mr. Oliver Heaviside. It represents in magnitude and
direction the flux of radiated energy.

Granting that the same vector represents the energy flux
when the medium is in motion, and there seems to be no adequate
reason for doubt, the total activity is

Adv=(J —eSev— ¢Sy, —uSVVen)dv+ Dy Wdv+ W dv), ...(XL)

the last term being the rate of change of the energy stored in
the element dv and due to electric and magnetic causes.
Equating this to the sum (4,4 4,)dv already obtained, we have

Dy Wdv+ W do)
= — (8¢ -18+8B¢,"'B). dv—(Scé+SeP,(V))dv. ...(XIL)
By Art. 129 (111.), p. 229, we find
Dy Wdv)=(D,W — WSVq). dv
= —SDS. ¢~%6dv—3S8.Dip~1. 8. dv— WSVe. dv,

where D! is the result of operating by D, on the function ¢-1
Further, by (1v.) of the same article,

§=Di—-VV'Vq 5=Dt6—6SVa+86V .,

and therefore
—S8p-16=—SDJ. ¢ 18— 2WSVs—S6V'Se’¢p-26.
Hence equation (X11.) becomes
Saf+S0P(V)=3S8.Dip~1. 8+ 5S6¢p~16SVe —SsV'Sa'¢p~18
+3SB.Digp, 1. B+ 1SB¢, 1 8SVe—SBV'Sq'¢,-18. ...(XIIL)
The first term on the right may be written
1S6.dpt. 8—§SaVSe,p 14,
where V operates on ¢! alone since we have generally
Di=d,~8SqV,

where d; refers to the rate of change at a point fixed in space.
Consider now the term £Sd.d.¢~*.d, where d,p~! is the time
rate of change of ¢! at the extremity of the vector p

=ix+jy+kz.

This change depends on the rate of distortion and on the angular
velocity of the anisotropic medium. In other words, it is a
function of the operation of V on o. Let f=iu+ ]v+kw be the
displacement at the point so that o= 4@ +jb+kw, and let u,, ete,,
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denote the deriveds of w and w with respect to #, y and 2. We
have

W . 2W oW
— -1 _—— A =4
156.d:p '6‘au¢‘“x+a y.uy+avm.'vz+etc.

_oW
=5
=80V
suppose, where V operates on ¢ alone, and where
. oW oW oW
Ov= —%’()uz—] 55;—]“6%’

Introducing this function © and an analogous function for the
corresponding magnetic term, and accenting vectors o operated
on by V, we replace (X11L) by
Sa(£+P,V)+Se'P,V’

=S5"(0+6,)V' —48sV .. (S8 718, + 5B, Bo)
+3(S8¢-16+3B9, RSV’
—S86V'Se’p 16 —=SBV'Sa'p, 1B, «rerevrer - (XV.)

Now this relation, or identity, is formally true for all velo-
cities o, and for all distortions and angular velocities (3 VVo);
and by the principle of virtual velocities we equate corresponding
terms of the relation. The symbolical statement of this prineiple

is that the identity (xv.) remains true when we substitute for
o, V' and o any three arbitrary vectors A, « and ». Hence

£4B.Y = — } V(S0 +SBop, 1Bp)s vvvveen (XvL)
because p, = p, if SAp;=S\p, for all vectors X ; and again
Pu=(0+6,)u+1u(Ssp10+56¢,7'8)

— ¢ 1888 — ¢, }BSBu, ...(XVIL)

gince ¢, = ¢, if Svep,u=Svgpyu for all vectors u and ».
Replace u in this expression by V operating in situ on the
various vectors, and we find

B,V =(0+0)V+V.VVp-15.8— $-168V5— 3 VS5,916,
reane | FV YV, B, MBSVB— L VSBp 1B, (xvIIL)
LVSS4- 18— p-1898(V) =1 VS84 16— S8,V . 16— 165V8
and v yyg-15. 5= VS8,p10—S8,V. 718
—V1S64-16+ V386,61, — S8,V . 1.

8iV8ie+ W 8jvSir+ 2 8iVSjo+ete.
Oy Vg

ete. .vueeenernen (XIV.)
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Thus we find for the mechanical force ¢,
=—(04+0)V-V.VVp1§.8+¢-18SV§
—V.VVgp,18.8+¢,1BSVA. ......(XIX.)

The stress across any small area is determined by (XvIL).

In general the terms in © and O, are small, and we shall
neglect them.

The stress across any small area due to the electric displace-
ment is when we neglect O,

B = §uSSp 13— 1386,
and if u is parallel to ¢~18, we have
P Up-16=—4Ugp"15.80¢ " 16=+Ugp 6. W,
while if x is perpendicular to ¢ -1,
PUu=+4Uu.S6¢p"8=—Un.W.
Thus the stress consists of a tension along the lines Ug-1§
and an equal pressure at right angles to these lines, numerically

equal to the electric energy per unit volume. Similar results.
hold for the magnetic stress.

ART. 141, When the circuit is at rest, and when there is no.
convection current the equations of circuitation become

S4+1=uVVy, B=—uVVe ccoverrreinnnn.. (1)

when we put (,=0. When moreover the medium is at rest we
have (Art. 139 (x.) and (IX.))

S=¢(e+éia)y B=¢i+m), 1=P(ede€ic); crerrenr.n. (r)
and from these we obtain the equation
¢(€+ezd)+§(€+€w)+ugvv¢,_IVVG-}-’I,(/VV)]m:O ....(III.)‘
which is explicit in the vector ¢. Having determined e from
this equation, the impressed forces being known, we obtain 4, ¢
and 8 by direct operations on e. The vectors » and VVj are also-
expressible by direct operations in terms of .

There are two principal types of this equation. For a
dielectric non-conductor & is zero, and the propagation of the
disturbance is by waves. For a conductor incapable of storing
electric energy, ¢ is zero and the propagation is by diffusion.

When there are no applied forces the equations (1.) and (11.)
may be replaced by

Pé+Pe=uVVy, ¢ +Pn=—-uVVe; ............ @v.)
and assuming €= Znent®, =€, .o, v.)
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where the a and the b are constant scalars, the equations are
identically satisfied provided e, and #, satisfy the equations

bngpen+ Pen=uVVa, bupin+Ppn=—uVVey ....... (vL)
and the boundary conditions. The scalars b must in general be
determined by an equation arising from the boundary conditions.
The scalars o depend on the initial state of the disturbance.

The particular solutions e, 7,e, are the normal solutions, and for
any two normal solutions we have

uSVVemn,+ bySe ey + b8y + Se;Pey + Sny® oy =0, .. (vin)
because SVVen,=89,VV'e/ — 8¢, VV'y,. Integrating throughout the medium
and converting a volume integral into a surface integral we find,
u[SVeyn,dv+by[Sede,dv+ by [Snyhmydv + [Se,Pedo + (S, mydv=0;
u[8Venydv + b, [Sespe,do+ by Sy mydv + [SePedo + [Sn @ mydv=0, (viir)
the second equation following by interchange of suffixes from the first.

If in either of these equations we replace b, and b, by conjugate complex
expressions & ++/— 15", and at the same time replace ¢, and €, by € £+ —L¢”
and n; and 7, by 7'~/ — 17", the real part of the equations is

uIS (Ven'+ Ve )dv+ b’j(Se’d)e’ +8e"Ppe’+8n'dn’ + 8y pn")dw

+ _‘-(Se'q)e' +8e'De’ + 8Py +Sn"Pn")dv=0, ...(1X.)
remembering in the reduction of this expression that ¢ and ¢, are self-
conjugate (Art. 140 (vir)). The surface integral is the total nward flux of
energy across the boundary due to the disturbances ¢, " and €', 9. If no
energy is communicated from outside the boundary, this is zero or negative
—zero if no energy from inside escapes, and otherwise negative. The
remaining integrals are all negative, the coefficient of & being minus double
the energy stored by the two distributions separately and the remaining
integral being minus the energy wasted by conductive friction. Hence in
any case b’ cannot be positive. If there is no energy radiated and none
dissipated, & must be zero or else ¢, €', ' and 1" must vanish so that there is
no disturbance. On the whole then, the real parts of the scalars b are zero or
negative when the medium receives no external energy ; when in addition
there is no dissipation and no radiation of energy across the boundary the
real parts are zero, and in this case there are permanent oscillations within
the medium, the scalars ¢ being determined once for all by the initial
conditions,

ART. 142, We shall now give a sketch of the theory of the
propagation of light in a erystalline medium adopting Clerk
Maxwell’s hypothesis. The medium being supposed non-con-
ducting the functions & and &, disappear, and the equations of
a free vibration become

o= éo=uV Vo, By=itg=—uVVep cvvrrrrnn. (1)

when ¢ and ¢, are two self-conjugate functions which are
constant if the properties of the medium are the same for the
same directions at all points.*

* The suffixes 0 are employed in these equations as we shall have more to deal
-with the vectors e and 4 defined in (II.).
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Assuming for a plane wave (Art. 138, p. 247) that

e0=esinn<t—S§>, q0=nsinn<t—sg), ........... (1)
where v is the wave-velocity, we find on substitution in (1.)
8=g¢e=uVvly, B=¢n=—uVvle ..ccccoeons (118.)
From these we obtain among other relations
—w=Sed=Sepe=uSev"n=Snpn=Sy8; ......... (1))

which show that the magnetic energy per unit volume is equal
to the electric energy, for we have

W = 1Sepeo=hwsintn(t=82) = W,. oo (v.)

The total energy is wsin’n (t—Sg), and the mean energy is

consequently Jw.
Again if p represents the ray-velocity we have

for all differentials dv. Differentiating (I11.)
dé= ¢de=uV(du’1 .n+v-1dy),
dB=¢dyp=—uV(dv'.e+vde); ......... (viL)
operating by Se on the first, or by Sy on the second, and
attending to (111.), we find
Sdv-IVen=0, .coevvrriiiereirinannnnn. (vim.)

because by (1v.) Sedd and SBdy are each equal to —idw.
As this holds for all values of dv we must have p parallel to
Ve, and by (1v.) we find for the ray-velocity

and this, it should be noticed, is parallel to the Poynting Flux
(Art. 140). Again it is easy to deduce from (11) and (1v.) the
expression for the wave-velocity (v)

We have now enumerated six vectors depending on the
propagation of the wave which are connected by the relations,

w w u
p=fEJV€)], 6=-,I‘—UQV7]U, B—WVUG,

1

Ty? 1 ~ ‘ ceerenn(XL)
v=, VB, e=-VBp, n Vpd;

Tu
1.Q. R
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and these vectors when drawn from a common origin pierce a
concentric sphere in a pair of supplemental triangles.

When some one of the four vectors 8, 4, € and # is given, all
the vectors can in general be determined subject to a choice of
sign. If e is given, we have §=¢e, w= — Sed and

—_ W .
n=1Veepe \/ SVegep Vege s 1o (x1L)

for the equations give Spd=0, SBe=0, or Sype=0, Sype=0,
and the suitable tensor is found by substituting n=axVgegp,e in
w= —Sy¢y. Hence B, p and v~ can be found without ambiguity
when the sign is selected. The case of exception is when e (or 5)
is a solution of the equation

Vpagp,a=0, ccoccvriiiiiiainiiininn. (xH1.)

or, in other words, an axis of the (generally non-conjugate)
function ¢-1¢, or ¢,"1¢.

When Uy or Up is given, two independent values of the
vectors can in general be found, and the solution corresponds to
the splitting up of a wave or ray into two plane polarised waves
travelling with a given direction for the wave- or the ray-velocity.
Let us seek to determine § and B from the second and third of
(x1.) when Uy is given. We have

% u
8=,—F~UV¢,‘1ﬁUu, ,8=T—UVUU.¢‘16, crreeeenen(XIV))

and from these, when we eliminate 3 and ¢ in turn, and introduece
new linear functions ¢, and ¢,, we find
¢.,6=qu .¢,"'VUy.¢"15. Uv=T%. 6,
¢.B8=uV. Uv. ¢_1V¢,_1,8Uv= Tv?. B.
Thus § is an axis of the linear vector function denoted by ¢,
and Tu? is the corresponding root, and because ¢, has one zero
root, (corresponding to the axis ¢Uv) there are only two finite
latent roots or two values of the wave-velocity along the
direction Uy. That the functions ¢, and ¢, have the same
latent roots appears from the fact that their latent cubics are
equivalent to the equation in Tv? obtained by eliminating 8 and
§ from (x1v.). If Tv? is the second root of ¢, and if & is the
corresponding axis, we have
Tv288¢p 18 =u2SVUup~18'¢p, ' VUvg 16 =Tv=88'p 16,
and therefore (by (X1v.)), since Tv? is not generally equal to Tv,
Sép~18'=0, SB¢p, 1B’ =0. .corriiiiiiiins (xvL)

But these conditions may be written in the form

S8’ =88e=SBy"=SB3=0, .cccen...... (xXvIL)
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where ¢, 8 4/, ete., correspond to §. Thus ¢ is perpendicular to
¢ and v, and therefore parallel to 3 by (x1), and B’ is parallel to
6. In fact we have

U¥=+UB, U =FUG .cccovvnvnennnnnn (XvIIL)
because Uv=UVs8=UVsg.
‘Since § and ¢ satisfy the relations (compare (XVL.))
Sp-18'=0, Sd¢,~1¢'=0, S§Uv=0, S§'Uv=0, ...(XIX.)
we easily find on putting Uv=TUV3§’'=V4s : TVSS in (xv.) that

u?S8'p, 188618 =Tv*TVES?, ..ovrinnnne. (xx.)
and that
w(S8'¢, 1888 10)F Ség,"1888'¢ 1)}
_ 800807100 |, _wS, 3809 ! xxr)
This result leads to a simple construction. Let the quadrics
So¢-lo=—1 and Sa¢, o= —1............ (XXIL)

be constructed. Then by (X1x.) § and & are parallel to the pair
of common conjugate radii in the central plane at right angles
to the direction of the wave-velocity. Let @ and @, be respec-
tively the vector radii of the first and second quadrics parallel

to 6, and let &’ and @ be those parallel to &, then we have
U , u

7 N (xXxI11.)

V= —_— = V= — co—
Vo, Voo

and from this construction everything relating to the wave can
be determined. For the first set of signs in (XVIIL) we have

s=ow, B=oNw, &=V, B=-sw,
e=¢ "o w, =0, 15, Jw, =¢ "o VW, =~ - IG,JW,}(XXIV-)
p=uVo log 'z, p=uVe, o, e,

where ' is double the mean energy per unit volume for the

second wave* (Compare (Iv.).)
From the fifth and sixth of equations (X1.) we have

eTp‘l =’LL"1V¢I17UP, nTp‘l = u"IVUp e, TR .(XXV.)
and as in (XV.) we may write,
dee=u"Vep VUp. gpe. Up=¢Tp2, }

b= VUp. gV nUpmnTp-2, [ =70 (XxvL.)

* Note that ¢~'05 has the same direction as the central perpendicular on the
tangent plane to the quadric S@¢ 1@ = -1 at the extremity of & and that its
length is the reciprocal of that of the perpendicular.
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and if we take ¢ and ¢’ to be the two axes of ¢, corresponding
to the two finite latent roots Tp~2 and Tp”-? of the function, we
find as before

Sepe” =0, Sege’=0, Sy¢ =0, Sy¢n” =0,
for it appears that Ue”= +Uy, Uy”"= FUe.

We can write down results analogous to (XXIIL) and (XXIV.)
for the various vectors related to the waves whose ray-velocity
is along a fixed direction Up.

We now return to equation (x11.), which we may write in the form

w
”=V¢‘¢"\/<Wib2))’ ..................... (xxvIL)
where m, i the third invariant of ¢, and where ¥
w=—SBede, w,=—Sede, wW=—S8epd e, ........... (XXVIIL)

because we have
SVeded,Vpepe=m SV pe,eV e, epee.
Expressing p and v! in terms of ¢, by (xL.),

_ uVeVeepe  u(wde—wde)
= Tima o, — )}~ y{mao(w'n,~ )y

.......... XXIX

2. mV. Vo ldee.pe  we—wd e ( )
VS w{mu(le,—w?)} uf{m  o(w'e, - wh)}
From these equations, on attending to (xxviIr),

Sp(wh—we)ip=0, Speplp= L%, (xxx.)

p(w, $,) =0, Spp lp= T e .
Sv w'ep™ ~wp, ) v =0, Svipyi=— "Z‘zﬁ § eeeneneeeaennienann (XxXXI.)

_ ~1 o o =Ly 90y — A T S S S .
(wl¢ w¢1) P m/ W (w w¢1 ¢) v J{m,w(w’w,—wg)} > (XXXH )
m,(w —wpd, N p=2w,d~wP v e (XXXI1L.)
m (¢~ 1w —wh, D p=12(w,—wdp 1P v l; cerrereennes (xxXI1V.)

the last relations, which alone are likely to give trouble, being derived from
(xxx11.) by operating with (w' —we, " $)(w,¢,~ ¢ — ) on both sides, remember-
ing that in this the factors are commutative.

From (xxx.) and (xxx1.) the equations of the wave-velocity surface and of
the ray-velocity surface may be written down, and equations (xxx1i1) and
(xxx1v.) are suitable for investigating the cases of indeterminations which
correspond to external and internal conical refraction.

Suppose, for example, that u'=b%, where b? is a latent root of the function
¢¢,~!'and that 8 (not now the magnetic induction) is the corresponding axis
while 3’ is the axis of the conjugate function ¢,~1¢p corresponding to the same

+ It should be noticed that w' has not here its recent meaning.
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root. The equation (xxxiit.) fails to give a determinate value of p, and
operating on 1t by Sf3’, we find
SBPUTI=0, cviriniriiiiiiniiiiiiinns (xXxXV.)

since ¢f'=024 . Two other equations for v are obtained by putting
w' =% in (xxx1.), and these are

Sy (b2 -, )Ly 1=0, Svlpyl=-—mpbh ;... (XXXVL)
and from these three equations we find four values of v, say v~ and

+v,"l. Substituting the value v™! in (xxx111.) and replacing w, by its value
in terms of p by (xxx.), we get

m (B2 — e, V) p+m, v, "Speb,lp+ 121 =0, ........(XXXVIL)

and this equation represents a plane conic. For we have seen (xxxv.) that
each vector in this expression is perpendicular to 3, so that if o’ and y’ are
the remaining axes of ¢, 1¢p corresponding to the latent roots «? and ¢? the
equation is equivalent to the pair

m, (62— a?)Sa’p+8a'bv, " (mSpp, " p+a*u?)=0,
m, (82— Sy p+S8y'dv, " (mSpp, lp+ tu?) =0,

In order to calculate in the most explicit manner the vectors v,7!, etc., we
may by Art. 71, p. 100, reduce the functions ¢, and ¢ to the trinomial forms

¢ A= —~ZaSad, PA=—Z02aSad, ¢, 1A=—Za'Sa’A, ¢ 1A=—-Sa"2Sc'A,
where identically A= —Z0Sa’A=—Za'Sal.

Putting v1=a'p+ g +7'r, equation (xxxv.) becomes ¢ =0, while (Xxxv1.)
reduces to p*(c2—b-2)=72(b2-a?) and p?+r2=m b2 and we finally get

for the four vectors
=’*ﬁ”_ﬂ_‘w(i‘l’\/“2*b2il’ M) ......... (XXXIX.)

% a Yal—c2" ¢ Ya?—¢?

v-1

Again, taking p=oax+ By +7yz and substituting in (xxxviL.), we find a
simple expression

m (02~ a?) oz +(b2 - ) yz} ~ m, (aa’p + ye¥r) (22 + 2+ ) +(ap + yr)ut=0 (XL.)

for the equation of the conic traced out by the extremity of p. We notice
that m,=SaSy%

In order to obtain more explicit forms for the equations of the wave-
surface and the wave-velocity surface, we note that the first equation (xxx.)
expands into

wBpyrp —wuSp¥p+u*Spyr,p=0,

where ¥ and ¥, are Hamilton’s auxiliary functions and where
YVAu=Vordu+ Ve Adu
By the aid of the second equation (xxx.) this becomes

SpveSpvrp+uBBpFp+ut=0. . ..cocooviiiiiiinennnnn (xLL.)
In like manner

Sv i ly= 18y ~ly=1 4+ 4~ 28y~ 1y 1yt =0 ........... (xu1.)
is the equation of the wave-velocity surface, where
Y VAp=Ve-IAd, u+ Ve, Ad~1p.
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Other forms may be given to the equation of the wave-surface such as
m2Z8a p?Zb%Sa’ p? — wPm, Z(b% + ?)Sa/p? 4+ ut =0,
derived from (xr1.), and
Sa'p? -0
m,a?2Sapt—u2”

derived from (xxx.) by the aid of the trinomial expressions for the functions,
but in problems treated by quaternions it is frequently preferable to deal
directly with vector expressions rather than with the scalar equations of
surfaces obtained by eliminating certain quantities from the vector equations.

Ex. Show that the wave-surface may be derived from a Fresnel’s wave-
surface by a pure strain.

[Put vfp=p and Sp(ud—wh)p=S8p(wy, ¢y} —wm)p, also
ww,= —wSpyrp=uwTp? etc.]



CHAPTER XVIL
PROJECTIVE GEOMETRY.

ART. 143. There are several interpretations which may be
assigned to a quaternion and which we have not yet explained.
We now propose to show that a quaternion is capable of repre-
senting a definite point loaded with a definite weight or mass,
and throughout this chapter we shall speak rather indifferently
of quaternions or of points.*

In the identity

Vg

v .
q=Sq.<1+Sg>=Sq.(1+OQ) i 0Q=ggy e (1)

it is manifest that the point Q at the extremity of the vector 0Q
drawn from an assumed origin is determined when the qua-
ternion g is given, and that Sq is also determined. We regard
Sq as a weight or a mass concentrated at the point. We shall
sometimes use capital letters concurrently with small letters,

g=Q.8¢, Q=140Q, .cerrvrrrrcrnecrnn. (1)

to denote points of unit weight, or unit points, so that Q.w
denotes the point Q weighted with w. Thus SQ=1, VQ=0Q.
The difference of two unit points is the vector joining them,

Q—P=14+0Q—(1+0P)=0Q—0P—=PQ; ......... (111.)
and the origin is the scalar point
O=1 .iiiiiiiiiiiin @av.)

A vector represents the point at infinity along its direction, as
appears by allowing Sq to diminish indefinitely in (1) while Vq
remains constant, for 0Q will then increase indefinitely in length,
so that at last Vg represents the point at infinity in its direction.

* See Trans. R.I.A., vol. xxxii., and Phil. Trans., vol. 201, pt. viii. I regret
that at the time of publication of these papers I was not acquainted with an able
memoir by Dr. James Byrnie Shaw (American Journal of Mathematics, vol. xix.,
pp. 193-216), in which somewhat similar results are obtained.
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The relation
p+q+r=(Sp+Vp)+(Sq+Vqg)+(Sr+Vr)
=SP+g+r)+FVPHGHP) ceceeeniiniiiinnns (v)

contains the principle of the centre of mass. It asserts that the
point p+q-+7r is situated at the centre of mass of p, q and 7,
and that its weight S(p+q+7) is the sum of the weights of the
three points. In another form,

my (14 a;) +my(1+ ) +mg (14 a5)
=(ml+m2+fm3)<1 +

Myay +Mylly “+ ’m3a3>
m+my+my
Ex. 1. The middle point of the line AB is §(a+B).
Ex. 2. Interpret the relation

Sp+V+EBg+Vr)+(Sr+Vp)=p+g+mn,

regarding Sp+ VY, etc., as representing weighted points.
Ex. 3. The centre of mass of equal and opposite weights is at infinity.
Ex. 4. The equations of the line a, b and of the plane ¢, b, ¢ are

g=za+yb, g=xa+yb+zc,
" where z,  and z are scalars.

Ex. 5. Corresponding points of similar divisions on the lines ab and
cd are
CAAPR I
Se 'SV 8¢ “Sd’
and corresponding points of homographic divisions on the same lines are
a+tb, c+id,

t being a variable scalar.
[See Art. 37, p. 41.]

Ex. 6. The equation g=a+2b¢+ct? represents a conic.

Ex. 7. The equation g=a+tb+u(c+id)

represents a ruled quadric, ¢ and » being variable scalars.

Art. 144. In order to develop this method, it becomes neces-
sary to employ certain special symbols, and with one exception
these are to be found in Art. 365 of Hamilton’s Elements of
Quaternions, though in quite a different connection.

For any pair of points, we write

(a, b)=bSa—aSh, [a,b]=V.VaVb;............... (1)
and in particular, for points of unit weight (A=1+a, B=1+p),
these become

(A, B)=B=A=f~q, [A B]=V.VAVB=VaB=Va(B—a) (L)
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Thus (a, b) is the product of the weights into the vector connect-
ing the points, and [ab] is the product of the weights into the
moment of the vector connecting the points with respect to
the scalar point or origin. The two functions (a, b) and [a, b]
completely determine the line ab.

For any three points we write

[a, b, ¢]=(a, b, ¢)—[b, ¢]Sa—[¢, a]Sb—[a, b]Sc, } (uiL)
(a, b, ¢©)=8[a, b, ¢]=S.VaVbVe=S8a[b, c], v
and for unit points A=1+a, B=1+8, C=1+1, these become
[A, B, C]=SaBy—VBy—Vya—VaB, (ABC)=S.afBy... .(1v))

Hence it appears that the quaternion [a, b, ¢] determines the
plane of the points, and regarded as a point symbol [a, b, ¢]
represents the reciprocal of the plane with respect to the unit
sphere having its centre at the scalar point. For the vector
V[abc] : S[abc] is minus the reciprocal of the vector perpendicular
from the origin on the plane SpV(By+ya+aB)=SaBy; that is,
its extremity terminates at the pole of the plane with respect to
the unit sphere. The symbol (a, b, ¢) is the sextupled volume of
the pyramid OABC multiplied by the weights SaSbSc.

Any quaternion may therefore be regarded as representing at
pleasure a plane or a point—reciprocals with respect to the unit
sphere.

The last special symbol we require at present is

(abed)=Salbed]; ..ccoovniuiriianianinan. w.)

or for unit points,
(ABCD)=SByd—Sayd+SaBd—Safy. ..cvevuera (VL)

Thus (ABCD) is the sextupled volume of the tetrahedron ABCD,
and (abed) is the same volume multiplied by the product of the
weights.

It will be observed that the five functions are combinatorial,
that is to say, they remain unchanged when to any of the
quaternions involved in one of the functions is added a sum of
products of the other quaternions multiplied by scalar coeflicients.
For example, [a+xb+yc, b, c]=[a, b,c]. More generally when
the constituent quaternions are replaced by linear functions of
themselves with scalar multipliers, the functions are merely
multiplied by a scalar. If any linear relation with scalar co-
efficients connects the constituents of a function, the value of
the function is zero. If any two constituents are transposed the
function changes sign, and in fact the laws of combination of
the rows or columns of an ordinary scalar determinant are
obeyed by the constituents of the functions,
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ART. 145. In terms of these functions, the equation of the
line ab and of the plane abc are respectively

[9,a,b0]=0, (¢, a,b,¢)=0;.0cccicecciiinnnn.. (L)

the first expressing that ¢, ¢ and b are linearly connected, or
that the plane gab is indeterminate; the second requiring the
volume (QABC) to be zero.

The equation of the line ab may also be written in the form

where p is a point wholly arbitrary; and the equation of the
plane may be replaced by

Sql=0, where I=[abc], ....cocccrrerrran.. (111.)

the point ! being, as we have said, the reciprocal of the plane
with respect to the unit sphere*

S.¢%=0,0ccciiiiiiiiiiiiii, (1v.)

or S.(140Qy2=0,0r 0Q*+1=0. Putting L.=1+0L, the equation
of the plane takes the known vector form S(1+40Q)(1+0L)=0

The plane at infinity is
Se=0, et (v.)

this being the reciprocal of the scalar point (the centre) with
respect to the unit sphere; or otherwise if ¢ represents a point
at infinity it is a vector (Art. 143, p. 263), so that Sq=0.

The formulae of reciprocation

([abc]; [abd])=[ab](abed); [[abe]; [abd]]= —(ab)(abed), (VL)

are worthy of notice. They connect two points a and b with
two points [abe] and [abd] on the reciprocal of the line ab, and
are easily verified by vectors. Formulae, such as these, are
often suggested by the forms of the expressions. For example,
the left-hand members of the above relations evidently vanish
if @, b, ¢ and d are linearly connected. We infer that (abed) is a
factor, and the remaining factor must be a combination of (ab)
and [ab].

It is often useful to observe that if 4, j and % are mutually
rectangular unit vectors,

1, =1, [4,51=k [1,14,j]=—k,
[, k]==1, (1, 4,5, F)=—1;.cceuiunii. (viL)

and relations such as these may be employed to ascertain the
numerical factors in expressions such as (VL).

* In ordinary homogeneous coordinates the auxiliary quadric is generally taken
to be a?+y2+22+w?=0. It is more convenient in quaternions to employ the
unit sphere as the auxiliary. There is however no loss of generality. (Compare
Art. 153 (x.), p. 284.)
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Ex. 1. Two lines, @, b, and ¢, d, intersect if
(abed)=0.
(a) This condition may be also written in the form
S(ab)[cd]+S[ad)(cd)=0.
Ex. 2. The point of intersection of three planes
Slg=0, Smg=0, Sng=0 is ¢=[, m, n).

Ex. 3. The line of intersection of two planes Slg=0, Smg=0 is

qg=[{, m, n),
where » is an arbitrary quaternion.

Ex. 4. If four planes , m, n, p have a common point

(, m, n, p)=0.

Ex. 5. The line a, b intersects the plane 8lg=0 in the point
aSib - bSla.

Ex. 6. The general equation of a conic is
g=at*+2bt+c,
where ¢ is a scalar parameter.
(a) The expression g=atity+bo(t,+t)+c¢

represents the pole of the chord joining the points ¢, and ¢, or the tangent
at ¢, if ¢, is varable.

(b) The pole of the line in which the plane Slg=0 meets that of the
conic is q=aSlc—2b8lb + cSla.

(¢) The centre is g=0aSc¢ - 2bSb+¢Sa.

(d) The conic is a parabola if SaSc=(Sb)

(¢) What kind of a conic is represented by

q=A+2Bt+c?

() If 9, ¢y ¢ g5 and ¢, are any five points on a conic, and if ¢, #;, ¢y, &

and ¢, are the corresponding parameters, the anharmonic of the pencil

q {01929594} 18
(9-91 792 (F =9 ¢ 94 _(ti—t)(t—1y)

0-929-99- @9 7-7) (-)G-0)
Ex. 7. The general twisted cubic is
g=(a, b, ¢, dYr1)3.
(a) The equation g=(a, b, ¢, d{ts, 13ts, 1)
represents the tangent at the point &, #; being variable.
(b) The osculating plane at a point is

q=(a7 bi ) d§tla 1§t29 1§t3’ 1)’

two of the scalars ¢, ¢,, ¢5 being variable and the other being fixed.

(¢) The equation in (@) represents the tangent line developable when
t; and ¢, both vary.

(d) If ¢, is given it represents the conic in which the osculating plane at
t cuts the developable.

(¢) The locus of the poles of a fixed plane Slg=0 with respect to these
conies is the conic,

=t,2(aScl — 2bSbl + eSal)+ £, (aSdl — bSel — e8Sbl+ dSal)+- bSdl — ZCScl +dSbl.
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(f) The osculating planes at the points in which the plane Slg=0 meets
the curve intersect in the point

g =aSdl —3bScl + 3¢Sl — dSal,
and this point lies in the plane.
(9) The symbol of the osculating plane Spg=0 at the point ¢ is
p=[at+b, bt+c, ct+d];
and this equation also represents the cuspidal edge of the reciprocal
developable.

(%) The last equation may be written in the form
p=>28[abc]+ 2[abd]+ t[acd] + [bed).
(¢) The symbol of the plane containing three points %, t,, #; is
p=38ttt.[abe]+ 2tot, . [abd] +Z¢, . [acd]+ 3[bed).
(7) The anharmonic of the group of planes joining two variable points on
the cubic to four fixed points is constant.

ART. 146. Hamilton has given two relations connecting five
arbitrary quaternions,

a(bede)+b(edea)+ c(deab) + d(eabe)+e(abed)=0 ...... (r)
andl e(abed) = [bed]Sae —[acd]Sbe+[abd]Sce —[abe]Sde; ...(11.)

which are of great importance and which correspond to the
vector relations

8SaBy=aSByd+ BSyad+ySaBs = VBySad+ VyaSBd+ VaBSyé.

The first has been virtually proved in Art. 89, p. 43, and we
may at once verify it by writing

za+yb+ze+wd +ve=0,

where x, 9, 2, w and v are scalars to be determined. From this,
by the combinatorial property, we have

0=(a, b, ¢, za+yb+2zc+wd+ve)=(a, b, ¢, wd+ve),

which gives the ratio of w to v. This relation enables us to
express any point in terms of four given points, so that we may
if we choose use an arbitrary tetrahedron of reference, for
example abcd.

The second shows how to refer any point to four given planes

Sag=0, Sbg=0, Scg=0, Sdqg=0;
and the truth of the formula may be verified by observing that
we get consistent results when we operate with Sa, Sb, Se
and Sd.

It will be observed that the relations (1) and (1) are linear
with respect to each of the five quaternions, so that the weights
of the points do not enter. In fact, just as in tetrahedral
coordinates, geometrical relations depend on homogeneous func-
tions of the quaternions. Though it is in general distinetly
disadvantageous to employ any system of coordinates in
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quaternion investigations, or even to refer in thought to any
tetrahedron or axes of reference until a problem has been
reduced to its ultimate simplicity, yet it is worth while observ-
ing that if we express a variable quaternion ¢ in terms of four
given quaternions «, b, ¢, d by means of the relation

g=za+yb+zctwd, ....cooiiiiinnn. (11r.)
the scalars «, ¥, 2 and w are the anharmonic coordinates of
Art. 40, p. 43.

Ex. 1. The line de meets the plane abe in the point
d(abce) — e(abed).
Ex. 2. Show that
([abel, [def ])=[er abed) + [ fdl)(abee) + [de](aber),
[[abc), [def )= —(ef)(abed) - (fd)(aboe) - (de)(abef).

[Compare Art. 145 (vi.). Four points on the line of intersection of the
planes abc and def are d(abce)—e(abed) and d(abef)—f(abed), and the
functions [@'5] and —(a'¥’) for two points on the line are proportional to
the right-hand members of the above. The weights are correct, and it only
remains to determine the numerical factors. Putting d=a and e=b, we
verify the signs by the equations cited.]

Ex. 3. The point of intersection of the planes abe, def and ghs is

a b c
[[abe), [def), [ghal]=| (adef) (bdef) (cdef) .
(aghi) (bghi) (cghi)
[Equating the left-hand member to za+yb+2c, we have
z{adef)+y(bdef) +z(cdef)=0, ete.,
and to determine the factor we may put
a=1, b=i, c=j, [abc]= -k, [def]=1, [ghi]=j.
The leift-ha.nd member becomes 41, and the determinant also reduces
to +1.

Bx. 4. Given four triangles a,b.c,, where n=1, 2, 3 or 4, show that six
times the volume of the tetrahedron determined by their planes is

(a109D909)  (byabyes)  (c1@9bacs)

(aytzhacs)  (Byashyes) (Crashacs) |- .
(aagdics)  (Biasbcy) (asbicy)

[This follows from the last example.]

Ex. 5. Establish the identities

II(ubucn)

Saa’ Sab’ Sac
Sba’ Sbb’ Sbe |= —S[abe][a’b’¢];
Sca’  Seb’ Sed

Saa’ Sab’ Sac Sad’

Sba’ Sbb Sbc  Sbd — _(abed)(@bed)

Sca’ Secb Sed  Sed’
Sda’ Sdb Sdc  Sdd’
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The first determinant is combinatorial in @, b and ¢ and also in o, ¥
and ¢. It vanishes if either triangle reduces to a line, and conversely.
Hence it must be a scalar function of [abc] and of [«'b'¢’], that is (having
regard to the weights) it must be of the form

28V [abe] V[a'b'c]+yS[abc]S[a'b'c'],
where » and y are numerical factors. For a=da'=7, b=b=j, c=c' =k we
get y=—1, and for a=a'=1, b=b =1, ¢=c=7 we find r= - f
Ex. 6. Prove that
Saa’ Sab’
Sba’  SbY

[This is most easily proved by vectors. Compare Art. 145, Ex. 1.]

=S (ab)(@'b') — S[ab][w'b].

Ex. 7. Find the equation of the hyperboloid having three given
generators ab, «'b’ and a”b".

[There are various methods of finding this equation, but we shall give a
method to illustrate the use of Ex. 3. If p and ¢ are any two points on
a generator of the opposite system to the given lines, the conditions of
intersection are (pgab)=0, (pga't’)=0, (pga’b")=0. Regarding these con-
ditions as the equations of planes, p being the variable point, the condition
that the planes should intersect in a line is [[gab][¢a'd’][qa"s"]}=0, which
becomes (aga'd)(bga"b") — (bga'b’)(aga"d")=0.]

ART. 147. The results of the last article are particular cases
of a very general theory applicable not only to quaternions but
to any operators or quantities which are associative and
commutative in addition.*

If f(a, b) is a function of two quaternions distributive with
respect to each, the function

Pty DY=f(By @) e (1)

is combinatorial in @ and b, for it remains unchanged when we

replace « by a+yb or b by b+xa, because
Fla+yb, b)y=Ff(a, 0)+yf(b, b) and f(b, a+yb)=F(b, a)+yf(b, b).

In like manner if f(a, b, ¢) is distributive with respect to a, b
and ¢ the function f(a, b, ¢)—f(b, a, ¢) is combinatorial in ¢ and
b; the function formed by subtracting from this the result of
interchanging « and ¢ is combinatorial in @ and b and also in
o and ¢; and the function of six terms

SHf(a,0,6) ciiiniiiiiiiii (1)

formed by transposing a, b and ¢ in f(a, b, ¢) in every possible
way, by changing the sign after every transposition of a pair of
constituents and by adding the results together, is combinatorial
in @, b and ¢. Similarly if f(a, b, ¢, d) is distributive in «a, b, ¢
and d, the sum S+ Aa,b,6d) e (L)

*8ee an interesting paper by Prof. A. S. Hathaway, Proc. dcad. of
Setence, 1897. .
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is combinatorial in a, b, ¢ and d; and finally
S+fla,bye,d,€) i (1v.)

is combinatorial in @, b, ¢, d, ¢ and vanishes identically because
the five quaternions are linearly connected.

It is geometrically evident from Art. 144, that every com-
binatorial function of two quaternions « and b must be a function
of (ab) and [ab]—the two vectors which determine the line «b.
Every combinatorial function of a, b and ¢ must be a function of
[abc which determines the plane abe; and the only combinatorial
function of four points is (abed)—the sextupled volume of the
tetrahedron determined by them. Hence (IL.)is a linear function
of [abc] and (111.) is the product of a quaternion by the scalar
(abed).

Now in forming these sums, we may proceed step by step.
For example, let us transpose bede in f(a, b, ¢, d, ¢), leaving a
unchanged. We obtain the sum

S+ f(a,, b, ¢ d,e),

where the temporary suffix applied to a denotes that it is free
from the operation indicated by £+. Next interchange « and b
and change the sign and permute a, ¢, d, ¢, leaving b unchanged.

We get —2tf(by, a, ¢, d, e).
Finally the vanishing combinatorial function (1v.) is expanded
in the form
Z+f(abede) — Z+f(bacde)+ Z+ f(cabde) — =+ f(dyabee)
+ 2 +F(egabed) =0, (v.}
and this general result includes Art. 146 (1.) as a particular case.
Again we may leave two or more quaternions fixed and add
together the sums obtained, so that for example
T+ f(obed)— A f(aycbd)+ete. = Z+ flabed). ...... (vL)
These expansions correspond to the expansions of determinants
by minors.

BEx. Tind the sources of the functions

([abl, d), [[abel, 4],

which are combinatorial in @, b and ¢, or in other words find linear functions
of a, b, ¢ from which the combinatorial functions may be derived by
summation and transposition.

[Since (abc). VAd=[bc]8. aVd+[calS.bVd+[ab]S.cVd
and V[abc]Sd= —[be]SaSd —[ca]SbSd —[ab]Sc8d,
the first expression is 2+ beSad,. Similarly the second expression is
—-V.[bc]Vd.8a—V.[ca] VdSb -V .[ab] VdSe,
and the function may be derived from —Vd8VeVd,.Sa or from — bSed,Sa,
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certain parts of this latter expression vanishing under transposition and
summation. As a determinant, the function is

o b ¢ |
[[abc)ld]=| S« Sb Sc¢ |,
Sad 8bd Sed |

and this may be deduced directly as follows. We may assume
([abc]d)=za+yb+2c since S[abc][[abc]d]=0 ;
and we have 28a+ySb+28¢=0, zSad+ySbd+28¢d=0.

The numerical factor of the determinant resulting from this may be
determined by substituting special values for @, b, ¢, d.]

ART. 148. We shall now consider the general linear trans-
formation of points in space.

In analogy with the linear vector function, the linear
quaternion function fg is a function which satisfies

J@+b)y=fa4fb oo, (1)
for all pairs of quaternions a and b.
The relation P=FG ceiiiiiiiniiiiii, (1)

represents the general linear transformation from points ¢ to
points p, lines and planes
q=a+tb, g=a+tb+uc,
becoming lines and planes
p=fa+ifb, g=fa+ifb+ufe,

and anharmonic properties being preserved.

If four given quaternions, a, b, ¢ and d, are converted by a
linear transformation into four others, a’, ¥, ¢ and d’, the

function which effects this transformation is (compare Art. 62
(1v.), p. 88, and Art. 146 (1)

fq=—{a'(bedq)+b'(cdga)+ ¢ (dgab)+d'(gabe)} (abed)™t; (T1L)
and this function is in the quadrinomial form. To reduce a
function to the quadrinomial form, we may arbitrarily assume

any four quaternions «, b, ¢, d and use either of the relations
connecting five quaternions. Taking the second,

fq={f[bed]Saq—f[acd]Sbq +flabd]Scq
‘ —flabc]Sdg}(abed)™?, ....(1V.)

and thus a linear quaternion function depends on sixteen
constants, four constants being involved in each of the four
quaternions f{bed), ete.

In (111.) we supposed the weights given. Let us now determine
a function which shall convert five given points A, B, C, D, E into
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five others A’, B, ¢/, D', E, paying no attention to the weights.
Such a funection is

__A’(BCDq)(B'C'D'E) | B'(ACDg)(A'C'D'E)

J4="—5cDA)(BCDE) T (ACDE)(ACDE)
C(ABDQ)(A'B'D'E) , D'(ABCg)(A'B'OE)
~(aBDC)(ABDE) (aBcD)(aBCE) (V)

for replacing ¢ by A we get fA=A'(B'C'D'E)(BCDE)-!, etc., and
putting ¢ =E, we have fE=E'(A’B'C'D')(ABCD)"! in virtue of the
relation connecting five quaternions. Thus the function (v.)
effects the required transformation, and it is evidently deter-
minate to a scalar factor. (Compare Art. 65, Ex. 5, p. 92.)

ART. 149. A linear function f being regarded as producing
o transformation of points, the inverse of its conjugate f'-1
produces the corresponding tangential tramsformation.
For any quaternions p and ¢,
Spg=Spf-lq'=Sqf 'p=S8q¢p, if ¢=fq, p,=f""'p. ....(1)
Hence any plane Spg=0, in which ¢ is the current point and
p the symbol of the plane, becomes after the transformation
Sp,g'=0, where ¢’ is the transformed current point and where p,
is the transformed symbol of the plane. Tn other words when
points are transformed by the operation of f, planes are trans-
formed by the operation of f'~1.

ART. 150. Now the symbol of the plane may be expressed in
terms of three points in the plane (Art. 145, p. 266), and therefore
for some scalar factor n, . .

nf ~Yabe]l=[fa, fb, fe]=F'[a, b, ¢], ............ (1)
since we may either transform the symbol of the plane in one
step by f'-! or we may transform the points a, b, ¢ which enter
into the symbol by /. The function F” is a new linear funetion
analogous to Hamilton’s /, and it is connected with f'-! by the
relation =B =Ff. i (1)

The scalar n may be explicitly expressed in terms of four
arbitrary points, a, b, ¢, d, by operating with S. fd on (1), when
we find n(abed)=(fafbfefd)=S[abe]Ffd, ............ (1)
where F is the conjugate of F'.

Thus in addition to (11.) we have,

n=fF=Ff, .cc.ccc.coociiiiininnn, (v.)

and we may also write

n(abcd): (fafbfcfd) — (f’a ’bf’c 'd), } (V )
Flabe)=[fafbf cl=nf-[abe]. [ .
8

J.Q.
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Replacing f by f+¢, where ? is a scalar, the relations
Ne=n+tn' + 20" + 80" +tt=f,F,=(f+)(F+1G+H+ ) (VL)

s "

are obtained, where the new scalars n’, n”, " and the new
linear functions @ and H are defined by

n'(abed)=Z(afbfefd); n"(abed)=Z(abfefd);
n”"(abed)=Z(abefd);
Glabe]=[a, f'b, el +[fa, b, fel+[fa f'b, c];
Hlabel=[f'a, b, c)+[a, f'b, c]+[a, b, f'c].
Moreover, on account of the arbitrariness of ¢ in (VL),
n=fF, W =fG+F, v'=fH+G, n"=f+H; ..(viIL)
and from the symbolical equations may be deduced the following
explicit expressions for the auxiliary functions
H=n"~f; G=n"—n"f+f?; F=a/ —n"f+0"f2—f%; (1X)
and the symbolic quartic
n—0fAn =" fA=0 (x.)
satisfied by the function f.

ART. 161, Let ¢, t,, t, and ¢, be the roots of the scalar quartic

(viL)

H_n"B+n—nt+n=0, ..ccooeviiinnin. (1)
s0 that the symbolic quartic may be expressed in the form
(F=t )=t )=t )(f—t)=0. oo (IL)

It follows just as in the case of the vector function that

(f—t)q, =0, where (f—t,)(f—t)(f—t)q=91, --.--. (11.)
and that g, is a fixed point—a united point of the transformation
—one of four q,, q,, q; and g,. The point g is quite arbitrary.

The equations
p=(f—t)q, P=(f—tD(F=t)g oerrreerrerrn @)
represent, respectively a united plane of the transformation and
a united line—the plane [q,, g5, ¢,] and the line ¢5q,.
We have also by the property of the conjugate,
Sq,/p=5¢,(f—t)g=0 if (f'—t)g/=0;.ccccc.n. (v.)
and thus the united points (g, ¢, g5 and gq,) of the conjugate
(f’) are the reciprocals with respect to the unit sphere (Art. 145)
of the united planes of f. In other words, the united points of
« function and of its conjugate form tetrahedra reciprocal
with respect to the unit sphere.

Ex. 1. Prove that fg may be reduced to the form
fg=(e+)Sq+8¢Vg+¢Vy,

and determine its latent quartic in terms of the linear vector function ¢,
the vectors € and ¢ and the scalar e.
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[By the distributive principle fg=#Sq+fVq, etc. To determine the
quartic assume fg=1q=1¢(Sq+ Vg), and equate scalar and vector parts. We
find (¢ - #)Sq+8e'Vg=0, (¢ — ) Vg +eSg=0, so that

(e—2)—Se(p—1)e=0.]
Ex. 2. Construct a function with four zero latent roots.
[Assume fa=b, fb=c, fe=d, fd=0.]
Ex. 3. Examine the nature of the symbolic equation satisfied by the
function fg=a(bedq)+b(cdga)+ ¢ (dgab) +d’ (qabe).

[Every point a+ub on the line a, b, is a united point of the function, and
the F function of fq—(abed)q vanishes identically. The quartic degrades
into a cubic.]

Ex. 4. Construct a function satisfying a symbolic quadratic.

[This may arise from one of two causes. The function may have two line
loci of united points a, b and ¢, d; or it may have a plane locus of united
points @, b, ¢. In the first case the latent quartic is a perfect square. In
the second it has a triple root. For full details on these matters see Phil.
Trans., vol. 201, viii.]

Ex. 5. Prove that two real lines remain unaltered by the general real
linear transformation.

[If the roots are all real of course the six edges of the united tetrahedron
remain unaltered. If the roots are all imaginary, they occur in conjugate
pairs, and the united points must be of the form a++/—1b, ¢+~ —1d. The
lines ab and ¢d are real and remain unchanged.]

ART. 152. Just as in the case of the vector function, we
obtain two new functions

Jo=3(F+) [=30f =1 (r)

on combining a function and its conjugate by addition and
subtraction.

The function f, is self-conjugate and the function f, is the
negative of its conjugate, or

Jo=Sss == f e (1)
as we see at, once by the property of the conjugate.
Since fq is the general lmear function of ¢, Sgfq or Sg¢f,q
is the general scalar quadratic function, and

SPfgd=0 ittt (T
represents the general quadric surface, the surface being quite
arbitrary both in shape and position, and not now referred to
its centre as in Art. 72, p. 106.

In like manner Spfg=0..c.cooiviiiiiinin. ().
is the general equation of a linear complex, or of a family of
lines p, q satisfying a single condition of the first order. For if
we replace p by p+1tq the equation remains unchanged, for we
have generally, by the property of the conjugate (11.),

Sqfq=—Sqfq9=0.
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The equations Sqfea=0, Sqfb=0 .ccccooeriiiiiiiins )

represent respectively the polar plane of the point a with respect
to the quadric, and the plane containing the lines of the complex
which pass through b. The first equation may be deduced from
the result of substituting a+¢g in the equation of the quadric,
when we find

Saf,a+2tSq fua+t¥8qfyg =0,

and if ¢ is on the polar plane, the points in which the line ag
meets the quadric must be expressible by a+1g, a —tq, because
the polar plane is the locus of harmonic means, and the points
a, a+1tq, g, a—tq form a harmonic range.

If Slg=0 is an arbitrary plane we see on comparison with (v.)
that the pole of the plane with respect to the quadric is fo~%,
and that the point of concourse of the lines of the complex which
lie in the plane is f,-1. It also appears that

SUf,"1=0 and SmfU=0..ccccevcrurnnn. (v1)

represent respectively the tangential equation of the quadric,
or the equation of the reciprocal quadric; and the tangential
equation of the complex (the intersection of the planes Sig=0,
Smqg=0 being a line of the complex), or the equation of the
reciprocal complex.

A complete account of the nature of the united points of the
functions £, and f, is furnished by the theorem of Art. 151. Since
/f, is its own conjugate, each of its united points is reciprocal to
the plane containing the remaining three, or the tetrahedron of
united points is,self-conjugate to the sphere of reciprocation.
We saw in Art. 67, p. 96, that it is impossible for a real self-
conjugate linear vector function to have a pair of equal roots
without having indeterminate axes, and this because a real line
cannot be perpendicular to itself. But a real self-conjugate
linear quaternion function may have two of its united ponts
coalesced into a single point provided the point is on the sphere
of reciprocation. The argument about real roots does not now
apply. For suppose a+~/—1b and a—a/—1b to be two united
points of a self-conjugate quaternion function, the condition of
reciprocity is

S(a+a/—1b)(a—a/ —1b)=8a?+8b*=0,

and this condition can be satisfied for real points @ and b if one
point (a) is inside and the other (b) is outside the sphere of
‘reciprocation Sq?=0.

As regards the function f,, the most general form its symbolic
quartic can have is

frn/f24n,=0 or (fi=8)(f?—&)=0,......... (viL)
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because the same quartic is satisfied by the function and by
its conjugate (—f). Supposing the united points to be a, o',
b and ', where

fa=alsa, fb=—alsh, fa'=n3a, fb=—a/5Y,
it is evident that a is the united point of the conjugate which

corresponds to the root —a/s, ete., and therefore by the theorem
of Art. 151 we must have

Sa?=0, Saa’'=0, Sab’'=0, Sb*=0, Sba'=0, Sbhb'=0,
Sa?=0, Sb?=0.

In other words the lines aa’, al’, a’b and bb’ are generators of
the unit sphere, or aa’bb’ is a quadrilateral on the sphere. The
four lines are consequently all imaginary. By Ex. 5 of the last
article it appears that the lines ab and b’ must be real; and
since these lines are reciprocal to the unit sphere, one of them
(ab) meets the sphere in two real points (¢ and b) and the other
meets it in two imaginary points (o’ and b"). Consequently one
of the scalars (8) is positive and the other (s') is negative.

The common self-conjugate tetrahedron of two quadrics
Sqfig =0, Sqf,q =0 has the united points of f,”Yf, for its vertices.
For if Slg=0 is the polar of a point « for both quadrics

hoe=tfa=l or f,-fia=ta,............. (VIIL)

so that @ is a united point and ¢, the corresponding latent root of
fi7Yf, Ifbis a second united point corresponding to the root ¢,

© Sbfia=t,Sbf,a=Saf,b=t,Safh=0,

because the functions are self-conjugate. These relations are,
however, geometrical consequences of (VIIL) and analogous
expressions.

A little care is necessary when dealing with the equations of
quadrics such as

8. 755000 or Sq(fi+af) (it uf) g =0

the second form of the equation shows that the function involved
is not self-conjugate, although £, and f, are self-conjugate, unless
f1 is commutative with f,.

Ex. 1. In terms of vectors prove that the forms of f and f, are
Jo(L+py=e+e+Sept+yp 5 fi(1+p)=€~Sep+Vnp;

e being a scalar, ¢, €, 77 being vectors and ¢, being a self-conjugate linear
vector function. :

Ex. 2. Prove that the latent quartic of the function f, is
B4 =) = (Sme =0
and verify the conclusions respecting the roots and united points of f,.
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Ex. 3. Prove that Sqfofi Yg=0
is the locus of the poles of tangent planes of the quadric Sqf;g=0 with
respect to the quadric Sgf,g=0.

Ex. 4. 'The locus of the points of concourse of lines of the complex
Spfg=0 which lie in the tangent planes of the quadric Sqf,g=0 is the

quadric Sqf.fyYg=0.

Bx. 5. An arbitrary quadric and an arbitrary linear complex have a
common quadrilateral of generators.

[This follows by expressing that the point of contact of a plane Slg=0
with the quadric 8¢f,g=0 is the same as the point of concourse of the lines
of the linear complex Spfg=0 in the plane. We have fa=tfja=1ul, where ¢
and » are scalars, so that _%,‘{f,a:ta. There are thus four points () through
which pairs of the common generators pass, and these points are the united
points of £;7,.]

Ex. 6. If f, and f, are any two functions, prove that the latent quartics
of f,f» and of f, 1, are identical.
(@) Show also that the latent quartic of fy~f, is of the form
A+ 2N+ N=0.
[The first part follows exactly as in the case of vector functions (Art. 71);

the second is obtained by combining this principle with the fact that
—f.fy ! is the conjugate of fy7,.]

Ex. 7. If a, b,  and ¥ are the united points of the function 1o,
corresponding to the latent roots +t, -1, +¢ —¢, prove that if we take
_za+yb +za’+wb’ _dat+y'd +z’a’+w’b’
1= JSafp T JSafp’ P Safp T ST
the equations of the quadric and the linear complex take the canonical forms
38qfug =2y +2w=0, Spfg=i(zy —z'y)+ (@ ~Zw).
Ex. 8. Prove that in any linear transformation the locus of a point
which with its derived is in perspective with a fixed point is a twisted cubic.
[If @ is a fixed point, the condition requires (g, ¢, @]1=0, so that g, fg
and « are in a line. This equation may be replaced by (f+¢)g=ua, or

g=u(f+ty'a; and this curve meets an arbitrary plane Slg=0 in the three
points determined by the cubic SI(f+¢)'a=0, or SIU(F+tG+2H+)a=0.]

Ex. 9. Prove that (9, f2, P 10)=0
represents the quadratic complex of lines connecting points and their
correspondents in the linear transformation produced by f.

(a) Prove that the reciprocal of this complex is the complex of the
conjugate ', (9, 1'% p, 'P)=0.

[If p and ¢ are any two points on a line joining a point to its corre-
spondent, we za‘ve for some scalars z, ¥, z, w, the relation zp+yg=f(zp+wq).
The complex follows on the elimination of the scalars.

If Slg=0 and Smg=0 are any two planes through and its correspondent
fq, we have §f'lg=0, 8f'mg=0, and for some scalars 2l +ym= f' (20 +wm).]

Ex. 10. The lines joining points to their correspondents which meet an
arbitrary right line a, b generate a quadric

(¢, f2, @, b)=0.
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Ex. 11. An arbitrary quadric Sqf,g=0 has eight generators which join
points to their correspondents in an arbitrary linear transformation.

[If the line ¢, fq is a generator of the quadric, the point ¢ is one of the
eight intersections of the three surfaces

Sqfq=0, Sfafq=0, Sa1fofq=0.
We shall see that this is the extension of Hamilton’s theory of the
“umbilicar generatrices.”]

Ex. 12. The generalized normal at a point on a surface being defined as
the line joining the point to the reciprocal of the tangent plane, prove that
the normals of the doubly infinite family of quadrics

Jrx o
S‘I-m-q_o =5

compose the quadratic complex (¢fgpfp)=0.

Bx. 13. The feet of the generalized normals of the doubly infinite
family which pass through a given point @ are given by

Sty
277
where y and z are scalar parameters.
wrl;iﬁré}y; iIr)10it1111?3 ;)(I)lr ntlhe normal to the quadric #, y at the point ¢ may be

TH2 W lE® 01 g, where ui=1, us+iy=2]

8wy
Ex. 14. The locus of the feet of normals of the family of quadrics
y=const. which pass through a given point is a twisted cubic.

Ex. 15. A quadric has eight generators which are also normals.

[Expressing that g=fa+za is a generator of the quadric Sgfg=0, we
have Safa=0, Safla=0, Saffa=0, which give eight points a and eight
corresponding normals. See Ex. 11.]

Ex. 16. Find the locus of poles of a fixed plane with respect to the
system of quadrics ftw

8¢ .¥—.¢=0.
7 F+y q
(¢) Prove that the plane Slg=0 touches one quadric if # is fixed, three
if y is fixed, and that if no restriction is placed on x or y, the locus of the
points of contact is a conic section.

[Compare generally Exs. 12, 13, 14. In general, if p is a point of contact,
p=L*Y 1 with the condition 82.1F1=0, or
f+x S+

p=l+(y-2)(f+2)1, or p=I8I(f+z) - (f+2)"1S.12
(since we need not attend to the weight of p). This reduces to a quadratic
T p=ISIFI—FIS. 2+ 2(ISIG1—~ GIS . 1)+ 22(ISLHl - HIS . 1?),
and the locus of p is a conic.]
Ex. 17. The tetrahedron formed by a point and by the poles of the
tangent glanes at the point to the three quadrics of a system inscribed in a

developable taken with respect to any fourth quadric of the system, is self-
conjugate with respect to this fourth quadric.
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EThe equation of a system of quadrics inscribed in a developable is
Sq( fi+xzf;)1¢=0, this being the reciprocal of a system passing through a
common curve, If z, y, z are the parameters of the quadrics which pass
through a point p, and if S¢f,~'¢=0 is the fourth quadric, the poles of the

tangent planes are fo(fi+afy) ™' p, H(h+9f) 7', fo(fi+2f) p. But
Solh+afyp St Ll fi+yf) e

=Sp(fi+zf) " fe(fi+uf)'p

=(@=9)"'Sp(fi+2f) [N+ af) - (fi+taf) N hi+ah) ' p

and this vanishes since p lies on the three quadrics #, 7, 2. This in particular
gives the theorem that confocal quadrics cut at right angles.j

Ex. 18. The locus of the poles of a plane Sga=0 to the same system of

quadrics is the line
g=(fitaf)a or [gfiafa]=0;

the locus of the poles of the system of planes Sq(a+¢b)=0 is the ruled
quadric

g=(fitzf)(a+td) or (gfiafbfra)(9/ibf:af:b)=(gfahbib)(afiefafb) s

and the locus of the points of contact of the system of planes is the twisted
cubie, o _ ¢ (44 10)S(a+ 1h)fyla+ tb) — fy(a+ th)S(a+b) 1 (@+b).

[In reducing the scalar equation of the quadric observe that the
quaternion equation is of the form g¢=a,+za,+2(b,+2b,) and apply the
identity Art. 146 (1.) to eliminate the arbitrary weight of ¢ and the scalars
2z and ¢.]

Ex. 19. Prove that two planes can be drawn through an arbitrary line
to be conjugate to every quadric of the system.

[If the planes Sg(a+tb)=0, Sq(a+¢b)=0 are conjugate to the quadrics
S¢fi"lg=0 and 8¢/, 1¢=0, the conditions of conjugation

S(a+tb) fi(a+tb)=0, S(a+tb)fy(a+tb)=0
lead on elimination of ¢ or # to a quadratic in ¢ which determines the two

planes in question. The case of exception arises when the line is a generator
of some quadric. The two conditions become equivalent.]

Ex. 20. Examine the particular cases of the twisted cubic locus of
Ex. 18.

[When the line of intersection of the planes is a generator of one of the
quadrics, f; suppose, the locus becomes ¢=f£,(¢+¢b). This shows that the
points of contact are homographic with the tangent planes Sg¢(a+tb)=0.
‘When the line of intersection of the planes is not a generator of some
quadric, let Sga=0 and Sgb=0 be the specially selected planes of the last
example, and let Sa(f;+uf)a=0, Sb(f;+/3)b=0 so that » and v are the
parameters of the quadrics touched by the two planes, then the equation of
the cubic becomes

9 =11+ ufp)(a+tb)Safya+( /i +ufy)(a+b) 12Sbfb.

The cubic is plane if (fjafafb/:0)=0. (See Ex. 9.)
The cubic degrades into a conic if (f;+vf;)0=0, or (f,+uf;)a=0, that is,
if either of the planes is a united plane of f,~f.]

Ex. 21. Determine the quadrics of the system Sq(f; +f;)~1¢=0 touched
by an arbitrary line. .
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[Taking the line to be the intersection of the planes Sqa=0, S¢b=0
of the last example, the condition of contact is most simply obtained by
expressing that the reciprocal line g=a+2b touches the reciprocal quadric
8q(f;+2f2)¢=0. Thus we find

Sa(fy +afy) aSb(fi+213)b — (Sa(fi+2f5)b)*=0,
or simply (z —u)(x —v)=0,
80 that the line touches the quadrics touched by the planes.]

Ex. 22, Show that the equation of the tangent cone from the extremity
of the vector p to the quadric

o Sq (fi+af)'g=0
may be written in the form

S7(0;+26,) =0, where O,h=d.\+epSpA—eSpA—pSe.
in the notation of Ex. 1, n being equal to 1 or 2.

[The condition that the line of intersection of the planes Sag=0, Sbg=0
should touch the quadric Sgf—'¢=0 may by the last example be written
in the form

(e+28¢a+ Sapa)(e+2SeB+SBPB) — (e +8e(a+ B) +SapB):=0,
where a=1+a, b=1+ /3. This reduces to
—8VafB¥VafB+28ep(a—B)VaB+eS(u—B)p(a— B)—Se(a—B)2=0,
and if the line of intersection of the planes is parallel to = and if p is the
vector to a point on it, we may take Vaf=7, 8—a=—Vpr (see p. 40,
Ex. 4), or B—a=-VpVaf. Substituting this last expression for §-a,
we find that the condition becomes
SVaB{VpadB—Vha(eSpf+pSef) - V(eSpa+ pSeu) p
+6VapSpB+eVpdpBSpa— Vep(SeaSpS — SefSpa)} =0
or SVafBV (pa - eSpa— pSea +epSpa)($B — eSpB — pSe 3+ ¢pSpB)=0.
In this transformation we make use of the fact that
SVeVaf¢pVpVaB=8VpVufBsVeVaf
in order to have the function in the last expression self-conjugate. If then
OL=pA —eShp— pSe+eSAp,

the condition becomes Sr-1r=0, and (futting f=/f,+xfy and therefore
0 =0, + 20,, the result required is obtained.]

Ex. 23. If pis any point ; py, ps, ps the reciprocals of the tangent planes
to the three confocals (parameters 7, ¢, ;) which pass through the point ;
show that the tangent cone to any other confocal (parameter ) is

z?8.p? #f8.pd @S pd
t—t + t—t, + t—1t, =0,
where any point ¢ is expressed in the form xp +2,p, +2,ps+ 23 ps.
[The condition that the line p+ugq should touch the confocal £ is
Sq(f+0'gSp(f+1)p—(Sq(f+8)'p)=0, or Sghg=0
if 4 is the linear function defined by
hg=(f+8)7qSp(f+ ) p—(f+)"'pSq(f+)p.
Substituting in turn p, p; (=(f+4)"'p), p» and p; for ¢, we find hp=0,
kpy=(t =)' Sp(f+0)7p, ete.,
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because we have
M+ p=(f+7(f+8) {pSp(f+8) 'p ~ (F+t)pSp(f+8)(f+8) ')
which reduces to
A(f+a)p=(0 - 1) (f+1)"pSp(f+0)7p
since Sp(f+8)7p—Sp(f+4)p=(t, - )8p(f+ 1) (f+9)7'p.
The equation Sghg=0 reduces to the required form since Sp, p,=0, ete.]

Ex. 24. Find the equation of the tangent line developable of the
quadrics S.¢?2=0, Sgfg=0.
[If p is the point of contact of a tangent line pg to the common curve,
the four conditions 8. p?=0, Spg=0, Spfp=0, Spfg=0, show that
(®, ¢, /1, f9)=0, or that (f+2)p=(f+)g,

where # and y are two scalars. Substituting for p in the conditions of
contact, we find four relations in ¢, # and y, which are easily seen to be
equivalent to three. The second condition gives 4 =8q(f+2)!(f+)g=0;
and because the first and third combine into Sp(f+»)p=0, they give

SqUf+) 2 (f+9)g=0, or 2 8q(f+a)(f+5)g=0.
Again the second and fourth give

Sp(f+2)g=0, or B=8q¢(f+y)q=0.
To eliminate x and  we have therefore to equate to zero the discriminant of
i)i with respect to # and to employ the condition B=0. On expansion 4
eeomes Sq(F+ G +2*H+2%)(f+3)g=0,
and as B=0, this reduces to the quadratic
Sq (F+2G+ 22 H)(f+y)g=0,
and the discriminant equated to zero gives
A8¢H(f+y)gSqF(f+y)q - (SqG(f+3)q9)=0.

Putting for y its value in terms of ¢ the required equation is obtained.]

Ex. 25. A plane is drawn through the line ab, and through the line ed
the plane is drawn which is conjugate to this with respect to the quadric
Sqgfg=0. The locus of the intersection of the plane is

S[gab] f~[ged]=0.

[If ¢ is a point on the intersection, [gad] and [¢ged] are the symbols of the
two planes. The equation may be transformed by Ex. 5, Art. 146.}

ART. 153. A linear quaternion function has in general sixteen
square roots quite analogous to the square roots of a linear
vector function. A function and its square roots have the same
united points, and the latent roots of the derived functions are
the square roots of those of the original, there being sixteen
different sets according to the choice of signs. (Compare p. 99.)

In analogy with the reduction of a linear vector function to
the product of a conical rotator and of a self-conjugate function,
we may write

fo=rffp, Fp=ffp, where f,=f/ and ff/=1,...(1)
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since if we take f, to be a square root of the product ff* we must

have f,f/ =1 because
fE=ff'=1J1T
L= =V e, (1)

It appears on counting the constants that f, is not a conical
rotator, there being sixteen constants in f and only ten in the
self-conjugate function f, so that there must be six in f. Con-
sidered geometrically the function f, converts the unit sphere
into itself and leaves unchanged conditions of conjugation with
respect to that sphere, because

Sfafib=0 if Sab=0.

Further, because f,=f;-! transformation of symbols of planes
effected by the function f, is identical with that of points

and thus we have

(Art. 149).
To study the nature of a function f, which satisfies the relation
L =1=f/f, or fi=f{"t or fi=f" coereeriis (I11L.)
we shall endeavour to reduce the function to the form
fi=fuf, where fu=f), fi=r( )r % o (IV)

that is to the product of a self-conjugate function and a rotator.
First we notice that if a function f,, which satisfies the condition
f.f./=1, converts a scalar into a scalar, it is a conical rotator,
affected it may be with a minus sign. For if
f(D=1=f1),
we have for all vectors p,
Sf,p=S8pf(1)=Sp=0.
Thus f,p is a vector, and the mutual inclinations of vectors and
their lengths remain unchanged after operation by f, because
Sf.ofip=Spp"
To effect the reduction (1v.), we notice that we must have
Fi=1 fD=f1) e (v.)
because f.f; =fufofofu=Ff and f(D)=[ f(1)=F D).
Let us now for the sake of symmetry introduce two quaternions
a and b defined by the relations

1+f,(V)=a=1+£(1), 1-f,(1)=b=1=f,(1)......(VL)

These quaternions are known when the function f, is given,
and in virtue of (v.),

faa=a, fb==>b, Sab=0, ...eeiiin (VIL)

so that @ and b are united points of the function f,.



284 PROJECTIVE GEOMETRY. [cmAP. XVIL

Take any point ¢ conjugate to the line ab, so that Sac=0,
Sbe=0; and take the point d conjugate to the plane abc so that
Sda=0, Sdb=0, Sde=0. Then we may assume

fie=c¢, fuld=—d, cooiiiiiiii, (viir)

and it is evident that all conditions (Art. 152, p. 276) are satisfied
for the self-conjugation of the function f,, and that f,2p=p,
where p is any point whatever. The function f, is determined
by the four conditions (viL) and (viiL), and the rotator f, is
given by f,-1f, or by its equivalent f, f. It will be noticed that
there is an infinite number of ways in which this reduction may
be made, for the point ¢ may be any point whatever on the
reciprocal of the line ab. Also the function f, has two line loci
of united pointst—he line ac and the reciprocal line bd.

Thus we can in an infinite variety of ways reduce an arbitrary
function f to the form

f=Ffuf where f=(f), fi=1 fo=r( )r-L..(x)

As a simple example, consider the transformations which
convert one quadric into another, or which change

Sqfig=0 into Spfyp=0, where p=fq. ........... (x.)
We have
7 ’ . - %
fi=rhf, whenee 1=ff, it f=f2ffk ... (x1)

and the function f, is quite arbitrary subject to the condition

fifi=1. .
As another example we propose to show that the intersection
of two quadrics is expressible in the form

g=(f+ t)’l’a, ........................... (XI1L.)

where f is a linear function, ¢+ a parameter and « a constant
quaternion.

If this curve lies on the quadric Sqf,qg=0, the relation
S(+O af(fHPa=Sa(f +0bfi( F+tfa=0
must be identically satisfied for all values of & Now
R0 =R+ 0h A0 =0T R oy
1 1 1 1 1 1 1 1

as appears by squaring both members of each equation, so that
the condition may be written

Saf AR+ 0N AR 0 ka0,
This becomes rational in ¢ if the square roots involving ¢ are
identical, that is if

FOPRALAATY or fri=ff or i F=fi iy .oofxiv)
where f, is a self-conjugate function, the condition now becoming
Sa(fy+1tf)a=0, or Safa=0 and Safja=0.
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Finally,

q=(f,"f,+t)a, where Saf,a=0, Saf,a=0, Saf,f,"fa=0 (xV.)
is the curve of intersection of the two quadrics Sqf;g=0,
Sqf,q =0, because if we put f,~Yf,=7f,". fof,"'f;, and notice that
JoJi7Y, is a self-conjugate function, the conditions that the curve
should lie on the second quadric are seen to be the second and
third of the conditions (Xv.). Thus a is one of the points of
intersection of three known quadrics.

Ex. 1. Investigate the transformation of one quadric into another by
first transforming to the unit sphere, then transforming the sphere into
itself, and finally transforming the sphere into the second quadric.

[If 8¢f1.g=0, Sqf,g=0 are the two quadrics, the steps are

1

-3
@=h ©=r, 5= 9=
Whereﬁﬁ'—_—-l_] 1 1 2 1 3 2 2

Ex. 2. Under what conditions can a function f be formed so that for all
points ¢ and ¢’ we shall have
Spfip'=8qfiy, where p=7q and p'=/q'?
Ea) Find the function f when the conditions are satisfied.
We must have ff, f=f, with the implied relation ff’f=#;" connecting
the conjugates of these functions. Hence
5= A= AT
and therefore the latent roots of the function f,7'f,’ must be identical with
those of f,7'f). For if ay, by, ¢;, d are the united points of fo~'f; and if
t1, 1, t; and t, are the corresponding latent roots we have (see p. 100)

FY  fag=t fas, ete.

Further if z, 9, z and w are certain scalars and if a,, by, ¢, d; are the
united points of f,71fy, we must have fa,=xa,, fby=yb,, fey=zc,, fdy=wd,;
and because f'f,f=f, we have n’n;=n,, where n, n; and n, are the fourth
invariants of f, f; and fo. But

n(agbycody) = zyzw(abieidy), or (azbchzdﬂ)‘/; =xyaw (“1”1"1‘11)“/%1,
and subject to this condition x, ¥, z and w are arbitrary, and the function f
involves these arbitrary constants and is given by

Jq - (asbyydly) = — Zway(bycadyg).]

Ex. 3. Under what conditions can two quadrics Sqf,g=0, S¢f,g=0 be
transformed into two others Sqf39 =0, Sqf,g=01

[This is nearly the same as the last example. We must have f'f, f=uf;,
f'fof=1f., where » and v are scalars, and hence f1f,7'f, f=wv~1f, "1/, so that
the latent roots of f,"1f; and of f;7'f; must be proportional. In the same
way we obtain the conditions that a linear complex and a quadric should be
simultaneously converted into a linear complex and a quadric.]

Ex. 4. A twisted cubic g=(abed{t, 1)* may be converted into another
¢’ =(a'b'cd'§r, 1)3 with arbitrary correspondence of points.
u+ttw
wt+o"?
establish a homography connecting the points on one cubic with those on
the other, and if we equate corresponding powers of ¢ in the relation

f . (abed§t, 1 =(ab'cd Yut+v, wi+)

we have four relations which determine the function f.]

Assuming ¢ = where %, v, ' and ¥ are arbitrary scalars; we
g y Uy s
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Ex. 5. Prove that

g=VI(f+5)(f+y)(f+2)}. ¢, where Se?=Sefo=Sef%e=0,
represents a confocal of a generalized system when two of the parameters
%y 3, z vary ; the intersection of two confocals when only one parameter
varies ; and a point common to the three confocals corresponding to given
values of the parameters. (See p. 124.)

Ex, 6. The generalized confocals are inscribed to the developable of
which 3

g=(f+ayke
is the cuspidal edge.

[The line of the developable corresponding to z is ¢=(f+u)( f+x)‘}e ;
the osculating plane is ¢=(f+u)(f+)( f+x)’%e; the symbol of this plane
is [(f+x) te, £ f+x)"}e, A+ x)_%e], or ( f+.7c)117 [e, fe, f%], or simply
p=( f+x)’lfe. This plane touches every confocal.]

Ex. 7. Eight generators of the circumscribing developable are generators
of an arbitrary quadric of the confocal system.

[The line ( f+u)(f+ x)’l’e is a generator of S¢(f+x)"'¢=0, and this is one
of eight corresponding to the eight values of ¢ deduced from the conditions
of Ex. 5.]

Ex. 8. Eight rays of the complex of lines joining points to their
correspondents in an arbitrary linear transformation are generators of an
arbitrary quadric.

[The equation of a ray of the complex is ¢=(f+u)a, where a is arbitrary.
This is a generator of the quadric Sqfig=0 if Safie=0, Sa(f f,+/1f)a=0,
Saf fifa=0. This is the generalization of Hamilton’s theory of the umbilical
generatrices.]

Ex. 9. The reciprocal of the developable generated by the tangents to

the curve
g=(f+ty"a is p=(f+¢t)*~™b, where b=[a, fu, f2a]
and where m is a given scalar.

Bx. 10. The family of curves ¢=(f+¢)"a includes the right line, the
conic, the twisted cubic, the quartic intersection of two quadrics, the ex-
cubo quartic and the cuspidal edge of the developable circumscribed to two
quadrics ; the corresponding values of m are 1, 2, —1 or +3, 3, 4 and 3.

Ex, 11. The centres of generalized curvature at a point on the quadric
Sg(f+x)1g=0 are
Ity [tz

“fraw fra A
where y and z are the parameters of the confocals which pass through the
point g¢.

[The point e=(f+u)(f+x)~'q is situated on the generalized normal at ¢
(Ex. 12, p. 279), and if this point remains stationary, that is if it is the
point of intersection of consecutive normals,

de=cdv=(f+u)(f+z) lgdv=(f+u)(f+x)1dg+(f+2) qdu,
since as ¢ is stationary d¢ and ¢ must represent the same point so that
de=cdv, where dv is some small scalar. This condition may be replaced by
dg=(f+u)'(f+w)gdv, where w is a scalar, and operating by S(f+ )¢, we
find almost exactly as in Art. 82, Ex. 4, p. 122, the required result.]

c q and ¢=
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Ex, 12. The surface of centres of the quadric is represented by
q=(f+x)“1§(f+y)%(f+z)71"e ; Set=Sefe==S8ef?%e=0.

Ex. 13. The differential equation of right lines on the surface
Sq(f+2)7g=0
dy dz
Y L = =0

Va(y) Vel
where n(y) is the fourth invariant of f+y.
[The differential of g=/{(f+2)(f+y)(f+2)}eis

d. dz
ag=4. (A . &), e
1=4. (L + ) Vi + a0+
and the differential equation of right lines on the surface is obtained by
equating to zero

sdg(f+aydg=18e( 24+ LV (Pag)(F+a)e

is

Sty frz
—3( dyrselT2 e + anse Lty
I(dySef+ye+szef+z€

=3}(z—y).{dy*Se(f+y) e~ de®Se(f +2) e}
Now Se(f+y) le=n(y) Se(F+yGQ+y*H+y*)e=n(y)'SeFe in virtue of
the conditions satisfied by e.]

Ex. 14. The differential equation of generalized geodesics on the

surface is
_Yy-z =T 4=
Ny = ¥ * Na@ie-v) ¥="

where w is a constant of integration.

[A generalized geodesic is a curve whose osculating plane contains the
pole of the tangent plane with respect to the quairic of reciprocation
(S.¢%=0). Thus ((f+2)7'g, ¢, dg, dgg};=0 is the differential equation of a
geogesic in terms of ¢ and of its deriveds.

Writing this equation in the form (f+z)-lg+¢q+udg+vd’g=0, where
t, w and v are scalars, operating by Sq, Sdg, 8(f+2)"q and 8(f+x)"'dg, and
observing that Sdg(f+ ) 'dg+8¢(f+x)"'d%=0, we deduce '

Sq(f+x)~2dg  Sdg(f+2)'d% _8.¢*8dqd’q—SqdgSqdY _,
Sq¢(f+x)2q = Sdg(f+x)'dg S.¢%S.dg%—Sqdg? )
This immediately integrates, and we find
Sq(f+x)%gSdg(f+2)1dg=s(S. ¢’S.dg* — Sqdg?),
where s i a scalar constant. By the last example we have
Sdg(f+2)dg=}(—y)(n(y)'dy* - n(z) ") Se e,

and similarly
Sq(f+x)2q=(y—2)(z— z)n(x)18eFe; 8.¢*=8¢f%= —8eFe; Sqdg=0,
S.dg* =}z —y)(z—y) . n(y) . dy? . SeFe+}(x —2)(y - 2) . n(2)™1. d2*. SeFe.

Collecting these results and putting »+sn(z)=w, the required equation
is obtained.}
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ART. 154. We shall now give a few examples relating to in-
variants of linear transformation and of quadric surfaces, and
shall explain their geometrical import.*

By Art. 150 (v.), p. 273, the relation

((f=t)a, (f=)b, (f=t)e, (f—1)d)
=(abed)(n—nt+n" -0+t ......... 1)

is an identity for all scalars ¢ and all quaternions a, b, ¢ and d.

In this sense m, »/, »” and n” are invariants, and every
relation connecting them implies some peculiarity in the nature
of the transformation effected by f DBut there is a wider sense
in which these four scalars are invariants. If », and n, are the
fourth invariants of two arbitrary functions f; and f, the
relation

(Affa-thtDe (Lffa-thfb, (Wi -thfde (fofz_thfz)d)}(H)
=(abed)nny(n—nt+n"t2—n"?414), ‘

is evidently true since (f,p, fi9, fir, fi8)=n,(pgrs), where p, g, r
and s are any quaternions. Thus any relation implying a
peculiarity of the function f and depending on its four scalar
invariants, implies also a corresponding peculiarity in the mutual
relations of the functions f,ff, and f,f,, that is, in the relations
of any pair of functions that can be reduced to the forms f,ff,

and f,f,. (See p. 98 and Ex. 3, p. 101.)

Ex. 1. If the function f transforms any tetrahedron abecd into another
a'b'c’d having its vertices on the faces of the original, the invariant ="
vanishes and an infinite number of tetrahedra possess the property. The
converse is also true.

[The conditions are (a'bed)=0, (ab'ed)=0, (abdd)=0, (abcd’)=0, and
because a' = fa, ete., we find on addition that »”/=0. Let a, b and ¢ be any
arbitrary points, and let d be determined from the first three conditions.
Then we have »”'(abed)=(abed’), so that if »”=0, the point fd will lie on
the face abc. More generally when =0 there exists an infinite number
of tetrahedra so that the tetrahedra derived from any one by the operation
of the functions f, /7, and £, f; are related in the manner described.

If #'=0, the faces of the derived tetrahedra contain the vertices of the

original.]
Ex. 2. The invariant #”'?—-2n" vanishes whenever a tetrahedron abcd is

so related to its correspondent in the transformation, that the tetrahedron
transformed from the correspondent has its vertices on the original.

[The sum of the squares of the latent roots of f is zero, or the first
invariant of f2 vanishes.]

Ex. 3. When the invariant
(72— 4n")? - 64n
vanishes it is possible to determine an infinite number of tetrahedra (abed)

*See Phil. Trans., vol. 201, ¢ Quaternions and Projective Geometry.”
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and their deriveds (a'd'¢d’) so that a tetrahedron can be inscribed to abed
and circumseribed to a'b'c'd.
[The sum of the square roots of the latent roots of f is zero, or the first

invariant of one of its square roots f t vanishes.]

Ex. 4, If an infinite number of tetrahedra can be inscribed to one
quadric surface and circumscribed to another, find the invariant relation.

[Let abed be the four vertices of a tetrahedron inscribed to the quadrie
8¢/19=0, and let the faces touch Sqf,g=0 at the points a'b'c'd’. If o'=fa,
etc., we have four equations of inseription Safja=0, etc.; twelve equations of
conjugation, Sa'fb=0, Sb'fja=0, etc., or Saff,b=0, 8af, fb=0, etc.; and four
equations of contact Sa'fya' =0, or Saf’f,fa=0. The equations of conjugation
require f,f to be self-conjugate, or f,f=f"f;; and the equations of contact
may therefore be replaced by Saf,f2a=0, etc. Hence if the first invariant
of fis zero and if fo f=71'f,, it is possible to inscribe in the quadric 8¢f, fig=0
and to circumscribe to S¢f,g=0 an infinite number of tetrahedra. %‘or when
we assume two of the vertices a and b, we have to determine ¢ and d to satisfy
(fa, b, ¢, d)=0, (a, fb, ¢, d)=0, (a, b, fe, d)=0, Scfyflc=0 and Sdf;,2d=0.
The first three give d in terms of ¢, and on substitution in the fifth we have
two equations in ¢, any solution of which will be applicable.

The quadrics S¢f,f?¢=0 and S¢f,g=0 possess therefore the required
pr<aperty, and so do the quadrics Sgf,g=0 and Sqf,¢=0, if it is possible to
find a function f for which fzf?:fi JoS=11s andqn”=0. It is easy to see
that the conditions are satisfied if the invariant of the last example vanishes
for the function f,71f,.]

Bx. 5. If a tetrahedron circumscribed to Sqf,g=0 is self-conjugate to
8¢/sg =0, the first invariant of the function f,-1f, vanishes.
[This 1s virtually proved in the last example, the function f; being f,1.]

Ex. 6. When the invariant n” vanishes, it is possible to determine an
infinite number of tetrahedra (abcd) and their deriveds (@'b'c'd’), so that each
edge (ab) of one of the tetrahedra intersects the opposite edge (c'd’) of the
correspondent.

[The invariant is (abed)n” = Z(abc'd’), and it manifestly vanishes if opposite
edges intersect, that is if each of the six terms (abc'd’) vanishes. Conversely
if #”=0, we may arbitrarily assume two of the points ¢ and b. We have then
to determine ¢ and d to satisfy five conditions, &bc’d’)=0, etc. Solving for d
(Art. 146, Ex. 3, p. 269) from three of these and substituting in the remaining
two, we get two equations quartic in ¢, and the point ¢ lies on part of the
curve of intersection of the quartic surfaces represented by these equations.]

Ex. 7. Find the locus of intersection of generators of a quadric which
are the sides of a triangle self-conjugate to another quadric.

[If the quadrics are Sgfig=0, Sgfag=0, we may first reduce the second
1, .-
quadric to the sphere S¢?=0 and the first to Sqfg=0 where f=£ “f1f2 A
If ¢ is the intersection of the generators and a ang b the remaining vertices
of the triangle, the conditions avre
S¢/q=8qfa=8afa=8q/b=8bfb=0, Saq=8bg==S8ab=0.
Now for the first invariant of f we have
w"(a, by ¢, fg)=(fa, b, ¢, f)+(a, b, ¢, fO) +(a, b, ¢, ),
and the conditions require (fa, b, ¢, fg)=0 and (a, /b, g, f9)=0, because the
four constituents of the first are reciprocal to a, while those of the second are
reciprocal to b. Also [a, b, ¢l=xfg, and therefore the locus is
n"8qf*q=8q ]
J.Q. T
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Ex. 8. Three intersecting edges of a tetrahedron self-conjugate to one
quadric touch another. Find the locus of the intersection.

[If the tetrahedron gabec is self-conjugate to Sg?=0, we have wq=[abc),
za=[beq], yb=[caq), zc=[abq]; and if the line ga touches Sqfg=0, the
relation Sq fgSafa —Sqfa*=0 must be satisfied. This condition of contact
may be written in the form Sg¢fg(fa, b, ¢, q)—-nga( 72, b, ¢, ¢)=0, and there
are two similar conditions of contact obtained from this by cyelical inter-
change of a, b and ¢. Writing down the identical relation connecting
a, b, ¢, ¢ and fg, and utilizing the conditions, we find

Sfq{ fe(a, b, ¢, 9) - g(a, b, ¢ fq)}—Sqfg{n"(a, b, c, g)—(a, b, ¢ J9}=0;

and this reduces to Sqf%q —n"Sqfg=0, when the factor S.¢? is discarded,
remembering that [abe]=wqg.]

Ex. 9. Each of three planes Sqa=0, Sqb=0, Sg¢=0, mutually conjugate
to S¢?=0, touches one of the family of confocals Sg(f+ 1) g=0. Find the
locus of the intersection of the planes.

[The points g, a, b, ¢ satisfy the conditions of the last example which do
not depend on the function £ ~ The conditions of contact are of the form
uSa®+Safa=0 or wu(abeg)+(fabeg)=0;
and hence (w+v+w+n")S¢?—8qfg=0
is the locus required.]

Ex. 10. The edge ab of a tetrahedron self-conjugate to Sq?=0 touches
the quadric Sqfg=0. The condition of contact may be reduced to

(fafbed)=0,
and the invariant #” vanishes if all the edges touch the quadric.

[By Ex. 6, Art. 146 and (v1.), and Ex. 1, Art. 145, this follows without
trouble.] .

Ex. 11, If the functions fj, f,, /3, etc., are transformed by multiplying
them by an arbitrary function f, and into an arbitrary function f,, the
functions f, f;7%fs, fifs fafi~Lfs, ete., undergo the same transformation and
may be said to be covarant with the original functions for this type of
transformation.

(@) The function f,,;, defined as the coefficient of ¢,2,¢; in the identity
Stitats froa[abel=[2¢, fy " a, Tt fy71b, 2t fi el

where t;, t,, &, etc., are arbitrary scalars, is (to a scalar factor) covariant
with the original functions.

(b) Examine the nature of the transformations the inverse and the
conjugate functions undergo simultaneously with the original functions, and
find the condition that self-conjugate properties may be preserved.

Art. 155. Several important geometrical and numerical
relations may be deduced from the identity

P1(P2 D3 Py Ps) + Do P Dy Ps P+ P3(Ps P51 Do)
+ Py (Ps D1 P2 Pa) + Ps(P1 P2 Ps P =0, ... (1)

in which p, is a rational and integral homogeneous quaternion
function of ¢ of order m,.
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The scalar equations

Psp1P:P) =0, (21 PaPap)=0 ovvoviinnn (1)
represent two surfaces of orders X°m;—m, and Z,m;—my
respectively, and any point on their intersection satisfies the
quaternion equation

[P1PePs]=0, coriiiiiiiiii, (1)

or else the three scalar equations

(PaPsPsPs)=0, (PaPsPsP)=0, (P4PsP1Pe)=0. ...(1V.)
Hence we see that the curve of intersection of the surfaces (11.)
breaks up into two parts, one of which is represented by (1IL),
while the other—the complementary curve—is common to the
five surfaces (IL) and (1v.).

Now the order of the curve (IIL.) must be a symmetric function
of m,, m, and m,, and that of the complementary curve must be
a symmetric function of the five orders m, The sum of the
orders is equal to the product of the orders of the surfaces (iL.),
that is, to

(ZPmy —m)(Z5my — myg) =2 Pmymy + ZPm,*+ *mym, ;
and accordingly the order of the curve (1IL) and that of the
complementary curve are respectively

Mygg=22m 2+ 2P mm, and m,=Z mm,. ......... )

Again the points common to the three surfaces (1Iv.) must
either lie on the surfaces (I1.) or else must satisfy the equation

(PePs)=0, eviviiiiiiiiiiiinn, (vi)

which requires p,=wup,, where « is a scalar. In the former case
the points lie on the complementary curve. When three surfaces
have no common curve the number of their points of intersection
is the product of their order; when they have a common curve,
that curve counts for a definite number of points of intersection,
and there are in general other points of intersection not on the
curve.* Now the surfaces (1v.), if they had no common curve,
would intersect in

(Z,Pmy —my )(ZPmy —my)(Z,Pmy — my)

=3 m, 2 tmym,— 2 Smymamg + (m+m) 2 Pmym,
+mBE+mimg+mm+mgd

common points, the number being transformed so as to exhibit it
as a function of symmetric functions of the five orders and of

symmetric functions of m, and m, The number of points
satisfying (VL) must be a symmetric function of m, and m,

* 8almon, Three Dimensions, Art. 355.
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alone. The number of points of intersection of the surfaces (1v.)
absorbed by the complementary curve is (Three Dimensions,
Art. 855) a linear function of the order and rank of the curve—
and the order and rank must both be symmetric functions of
the five orders. Hence the number of solutions of (VL) is

P 3 2, 2 3
ty=mi+mim;+mmsi+md ... (viL)

In the next place, in order to find the rank and the number of
apparent double points of the curve (IIL), we notice that it meets
the surface (p,PsP;P,)=0 in mu(Z,>m;—m,) points. These
points, as appears from (L), are either solutions of (p,p,)=0 or
points on the complementary curve. The number of intersections
of (111.) with the complementary curve is therefore by (vIL)

= 5,
b9s = Mya(Z, 1y —Mg) —
—_ 5, 3y 3 8m 2
=M T 5m — Z3mB— 2 m my—mmgms. ...... (viL)

Employing the relation r+t=m(u+v—2) of Salmon’s Three
Dimensions, Art. 346, connecting the rank » and the number of
intersections ¢ of a curve of order m and its complementary on
two surfaces of orders u and v, we find for the surfaces (IL.) of
orders ¥5m,—m, and Z,5m,—my; that the rank of the curve

(ur.) is Pigg= —tio3 M5y (22,Pmy — My — M5 — 2),
which reduces by (vIIL) to
198 = Myea( XMy — 2)+ 2 3m 3+ 2 3m 2my+mymym,
=mmymy — 32 *m, 3 m;m,+ 2(Z*m,)?
—2((Z2m )P —Z3mMyMy). v, (1x.)

In the next place, to find the number (%,y,) of apparent double
points of the curve (111.), we have (Three Dimensions, Art. 346),

higs=3Myga(Mypg—1)— £ 700, ceveniiennnnnn. x)
The rank (r,) of the complementary curve is determined by
To= =1+ M (22 5m, — M —mM)—2),
and this may be reduced to
1= 25m, Z,5m m,+ 2 Smymym, — 23 Smm,, .......(XL)
and the number of apparent double points is
hc= %mc(mc— 1)_ %"'ﬂ'
We may denote the complementary curve by the symbol

((P1PyPsPaPs) =05 «evveeeeeernunnnnnns (x11.)

which is intended to denote that the points of the curve satisfy
every equation obtained by omitting one symbol. Similarly,

(1P Py P Ds L)) =0 evviriiiniiiannnn (x1L.)
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may be taken to denote the points which satisfy the surfaces
obtained by omitting two symbols. These points lie on the
curve (xXi1.) and also on the surface (p,p,p;p,)=0. But the
intersection of the curve and the surface includes the points t,,,
on the curve [p,p,p;]=0. Omitting these, the number of

points is Me(My +My+ Mg+ Mg) = bios=Z Fmmymg. .......(XIV.)

Ex. 1. The curve [g¢, g, 2]=0, where f is a linear function, is a cubic ; its
rank is 4 and the number of its apparent double points is 1.

Ex. 2. The curve [f9, /s, f:g]=0 is a sextic of rank 16 and with 7
apparent double points. It 1s the locus of (i)oints that can be destroyed by

functions of the system ¢# 7, +2,f,+£f; and the locus of united points of

functions of the system it fottofs

b
whtusfotusfy
where ¢ and u are scalars.

Ex. 3. The surface (19: f29 Fs2: 1i9) =0

is the locus of united points of a family of linear functions.

(2) When the functions are self-conjugate, it is the Jacobian of four
quadrics.

Ex. 4. The curve  ((fig, /o0, fs9» fu9, [59)) =0
is of the tenth order and its rank is 40.

(@) The Jacobians of sets of four out of five given quadrics have a common

curve, and the Jacobians of sets of four out of six quadrics have twenty
common points.

ArT. 156. If Q is any homogeneous and scalar function of ¢
of order m, but not necessarily rational or integral, the equation

Q=0 it )
represents a surface.
We shall write the differential of the function @ in the form
dQ=mSpdq, ...cooeviiiiiiiinian, (L)

where p is a homogeneous function of ¢ of order m—1. By
Euler’s theorem concerning homogeneous functions, we see by

(1) that Q=Spq=2P, ccc.coovvirirriiriannnan. (1)

where P is the function of p into which @ transforms when ¢

expressed as a fraction of p is substituted in @, for we may

regard q as a function of p since p is a determinate function of q.
Again we shall write generally for the differential of p,

dp=(m=1)fdg, .coocovvins virininnns (1v.)

where f,dq is a linear function of dg and where the constituents
of f, involve ¢ in the order m—2; and by Euler's theorem we

have Y X AU (v)
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This function f, is self-conjugate, as we have shown in a more
general case (Art. 60 (1v.), p. 79).
Now if we differentiate (1I1.) we have

dQ=Spdq+Sqdp=aP, ........ccc0vrmnun.. (VL)
and on comparison with (IL) we see that
dP=nSqdp, where (n—1)(m—1)=1, ............ (viL)

and it is easy to verify that n is the order in which p is involved
in p.
We shall also write generally for the differential of ¢ expressed

as a function of p, dg=(n—=1)fdp, .coovvriiiiiiinininne (VIIL)

and the function f, is also self-conjugate and involves p in the
order n—2 in its constitution. Thus for any differential by (1v.)
and (vil) we have

dp=(m—1)fdg=(m=1)(n—=1)f,fp. dp=fofp-dp ...(1X.)
by (vIL), and accordingly
Jafo=1=Fpfar covvnieeniiiiniiiins (x.)

or one function produces on an arbitrary quaternion the same
effect as the reciprocal of the other. In particular, applying
Euler’s theorem to (VIIL) as we have already applied it to (1v.),
we obtain the relations

P=f0=Fo""0 q=LoP=f D oo (X1
When dgq instead of being perfectly arbitrary satisfies
dQ=0, or Spdg=0 where Q=0,............ (x11.)

dgq represents some point in the tangent plane at g, and p is the
symbol of the tangent plane or the reciprocal of the plane with
respect to the auxiliary quadric. The equation P=0 is that
of the reciprocal of the surface. The relations of reciprocity are
clearly exhibited by the equations (compare (1), (111.) and (VL))

Spdq=0, Sqdp=0, dP=0, P=0 if d@=0, @=0;(xuL)
—Sdpdg=Spd2q=8q¢d®, d?P=0 if also d*Q=0.....(xIV.)
Consecutive tangent planes at ¢ and q+dg intersect in the
line common to the planes : ‘
Spr=0, Sdpr=0,..c.ccvienerireno(XV.)

» being the current point, and if ¢+d’q is a consecutive point on
this edge we have the group of relations

Spg=0, Spdg=0, Spd'qg=0, Sdpd'q=0,
Sqdp=0, Sqdp=0, Sd’pdg=0,....... (XVL)
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remembering that in general Sdpd’'q=S8d’pdg because f, is self-
conjugate. Hence to conjugate* tangents (¢dg and gd’q) on the
surface correspond conjugate tangents on the reciprocal, and the
reciprocal of a tangent to the surface is the correspondent of
the conjugate tangent, for we have S(p+zd'p)(q+ydq)=0.

The differential equation of the asymptotic lines is

these lines being their own conjugates.
The differential equation of lines of curvature is
(padpdg)=0, .ccooviiiniriniiinnnn (xXvIIL)

for this is the condition that consecutive generalized normals
should intersect. If ¢ is a centre of curvature, we have

c=q+tp, de=(1+tf;)dg+pdt=(q+tp)du,...... (X1X.)
where du and dt are some small scalars. (Compare Art. 153,
Ex. 11.) Hence as p=f,q we obtain the relation

qdu—dg =(fy"'+1)"'qd¢;

and operating by Sf,q we get

Sqfy(fy ' +1)7'q=0 or Sq(fy'+1)"'g=0, ...... (xx.)
since fo(fo +0) =Y —(fy +)!} and Sgfyg=0.

The theory of generalized curvature is thus connected with
that of the generalized confocals. The scalar ¢ is the parameter
of one of the confocals Sr(f,+t)-'r=0 which pass through g,
r being the current variable. The confocal ¢=0 is Srfyr=0.

The roots of this equation in ¢ determine the centres of cur-
vature, and because in terms of f,(=f,"1) it becomes

Sq(Fp+tGp+ 2 Hy+13)g=0 or Sq(G,+t*H,+t%)q=0 (XXL)

(since Fp=mn,f,"'=mn,f, and Sqf,g=0) after discarding the
factor #, it reduces to a quadratic and gives two values of ¢.

Ex. 1. The points having common polar planes with respect to two
surfaces satisfy the equation

(Prp2)=0;
the points having collinear polar planes with respect to three surfaces lie on
the curve —0-
[P1p2ps]=0;

the points having concurrent polar planes with respect to four surfaces
generate the Jacobian (Pupapsp)=0;
. X =0;

the points having concurrent polar planes with respect to five surfaces lie on
the curve (PipspsPip)) =0

* Consecutive tangent planes intersect in the tangent line conjugate to that
joining their points of contact.



296 PROJECTIVE GEOMETRY, [cmAP. xVIL

and the points having concurrent polar planes with respect to six surfaces

tisfy th i
satlsty the equation ((PpaPapapsP)) =03
provided we write generally d@,=m,Sp.dg, where @,=0 is the equation of
one of the surfaces.

Ex. 2. Tofind the osculating plane at a point on the curve of intersection
of two given surfaces.

[The osculating plane must pass through the intersection of the tangent
planes at the point ¢, and its equation must be of the form

Spyr+tSpyr=0,
where Sp;r=0 and Sp,r=0 are the tangent planes. We have identically
Sp1g =8pyg =Spydg=S8p,dg =0,
and by (x1v.) the scalar ¢ is determined by the condition
Sdp,dg + ¢Sdp,dg =0,
so that the osculating plane is
Sp,rSdp,dg — SprSdp,dg =0.

This has now to be simplified. Assuming a quaternion o satisfyin
Sadg =0, we have dg=[p,pya]. Also dp,=(m,-1)f1dq, dp,=(m,-1) f,dg, anﬁ
accordingly

8dpdg=(m, - 1)S[ppelfilp1pe]=(m—1)S[ppallgFip. fi7a],
since f'[abc]=[f'aFbf~'c]. By Art. 146, Ex. 5, this becomes

Spig SpiFipy Spifile 00 Sag
—8dp,dg=(m,—1)| Sp,q Sp,F\ p,8p,f~'a |=(m1~1)|0  Sp,F\p,Sp,fi e
Saq SaF\p, Saf,"la Saq SaF\p, Saf;'a

= —(my ~ 1)Saq*Sp,F, p,.
Hence the osculating plane is
(my— 1)SpyrSp, Fyp, ~ (my — 1)SpySp,Fy p,=0.]
ART. 167. If we use the notation d, to denote that the

differential of g is equal to a quaternion a, we shall have for the
k® polar of a with respect to the surface @ =0,

dfQ@Q=0 where du=0, ........... e (1)
and if m is the order of the surface, we may write the equation
of the k& polar in the form

dgfd, ¥ Q=0, ..ceiiiiiiriiiiiiiin (1r.)

the quaternion r being now the variable point, and » being
regarded as constant in performing the differentiations indicated.

If we write d,Q=Sap, ........ e (111.)

we may consider the quaternion p to be derived from the scalar @

by an operator D analogous to Hamilton’s operator V, and we
shall have generally and symbolically,

D= [bed]d, —[acd]dy+ [abd]d, — [abe]dy |

(abed) ’

coreenen{IV)
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and in particular when g=w+iz+jy+kz, a=1, b=1, ¢=7 and
d=k, we have
0 _ ;0 ;0 _p0_0
“ow ' Yoy ez ow
In this notation (1.) and (11.) become ‘
(SaD).Q=0, (SaD)(SrDy*-#.Q=0. ...........(VL)

We may also formally identify our notation with Aronhold’s
symbolic notation by writing the second of these expressions in

the forms (Sae)(Sreym-¥=0 or ele, *=0, .....cu..... (VIL)

where e is a symbolic quaternion devoid of meaning unless it
enters into a term homogeneous in e and of order i, and where
e,=Ser.

There is thus a considerable latitude in the choice of an
appropriate notation for the investigation of projective properties
of curves and surfaces.

VvV

Ex. 1. In investigations which involve differentials of the third order of
the equation of an arbitrary surface of order m, we may write

d,Q=mSpa, d,d,@=m(m—1)Sbfa, d.d:d.Q@=m(m—1)(m—2)Scf2(a,b)

with liberty to transpose in any way the quaternions a, b, ¢, the function
fa(a, b) being a bilinear function of ¢ and b (compare Art. 60).

(@) In terms of the operator D,
1 1 1
p=’/70 D. Q, f(Z:Wl—) DSaD. Q, f2(a, b)=m DSaDSHD. Q-
(b) We may also write
Q@=Seq?, d.Q=mSeaSeq?, d,d@=m(m~1)SebSeaSeq,
d.d;d,@=m(m — 1)(m — 2)SecSebSea,

where ¢ is a symbolic quaternion devoid of meaning unless it occurs thrice in
a term.

(¢) We have
P=fq=rig. 9)=eSeq?; fa=fy(a,q)=eSeaSeq; fy(a,b)=eSeaSeb.
And when we differentiate fo totally we find
d.fa=f.da+(m-2)f,(a,dg).
(d) The equation of the Hessian is
n=0 or (fa,fb,fe,fd)=0,

where 7 is the fourth invariant of f and where a, b, ¢ and d are arbitrary
points. It may also be expressed in the forms

(ed'e’e")SeaSe'bSe"cSe"dSeq Se'qSe"qSe"qg=0;
(e'e’e”)*BeqSe'gSe"qSe"g =0
SaDSED'ScD"SdD"(DQ, D'¢, D'Q", D"Q")=0 ;
(DDD'D"R. Q@Q'Y"=0,

where ¢, ¢, ¢', ¢”, etc., are equivalent symbols (compare Art. 147, p. 270).
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and of order m, in the variable ¢,

q-J=[Pspsps]- €1~ [P1psps]- o+ [P1220s] - €3~ [122ps] - Qo
(@) For an arbitrary differential, and for an arbitrary scalar m,

q-AdJ=(m—~1)J.dg+Z + @, . A[papyp,)+ 2 * (m; — m)[ papsp,)Sp,dyg.

(b) If four surfaces have a common point, their Jacobian passes through
that point. If the orders of the surfaces are all equal the point of common
intersection is double on the Jacobian. If the orders of three of the surfaces
are equal, the fourth touches the Jacobian. If the orders of two surfaces are
equal, the line of intersection of the third and fourth touches the Jacobian.

Ex. 2. If J=(p,p,p;p,) and d@,=m,Sp,dq, where ¢, is homogeneous

(¢) At a point common to the intersection of four surfaces of the same
order m,
q.d=—m(m~—1)Z +[pyp;ps]Sdgfidg, where dp,=(m—1)fdg;
and hence the equation of the tangent cone at the double point is

2% (apypapy) Srfir=0,
where a is an arbitrary constant quaternion.
(d) If four surfaces have a common multiple-point of order £, we find that
a0 qI=3 £ [Ep, dlpy d-ip]. A+,
ao-. T=(@Ipy dlpy &7y, AP,
where 2 and 2, denote sums of terms which vanish when ¢ coincides with
the multiple point, and we also have

d*@, =m,Sdgd*~'p, + vanishing terms.

(¢) At the multiple point d#-5.J and d*-4. ¢/ vanish, and therefore d%-4.J
vanishes (as in (b)), and the Jacobian has a multiple point of order 4£-3;
and because we may write (as in (a))

d#-3, gJ=mdq . d¥-4J+ 2 £ (m; - m)[d*-1p,, d*-1p;, d*-'p,]S8dgd*-'p,+3,",

it follows when the surfaces are all of the same order that the Jacobian has
a multiple point of order 4% — 2.

Ex. 3. Determine the equation of a surface which meets a given surface
at the points of contact of lines which meet it in four consecutive points.

[This investigation, though rather long (compare Three Dimensions,
Pp. 559-567) affords some useful exercise in the manipulation of our formulae.
If ¢ is the Boint of contact and ¢r the tangent touching at four consecutive
points, we have

Q@=0, mSrp=8rD.Q=0, m(m—1)Srfr=8rD?. =0, SrD3.Q=0.

‘We may suppose the point  to lie in an arbitrary plane $/{=0, and we
have to obtain the resultant of the four equations in » and finally to free it
from the arbitrary I. Let Sra=0 and Srb=0 be the equations of planes
through the generators of the quadric (» variable) Srfr=0 which lie in the
tangent plane Srp=0. Thus we have »=[apl] and » =[bpl] for the points in
which three generators meet the arbitrary plane. One or other of these
points must lie on the cubic in .. Hence

SrD3. Q.SrD®. ¢ =0, or SrD3. ¢ .SrD. =0,
or . (SrDS.SrD3+8¢/D3. 8rD%)QQ =0,
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where the accents applied to D and @ are temporary marks connecting
operator and operand. Now this may be written in the form

(4B3-34BC)QQ =0,
where A=8/DSrD, 2B=8D'SrD+8r'DSeD, C=8rD'SrD,
and it is easy to express the operators 4, B and ¢ in terms of the function f.
In virtue of the definition of the planes Sra=0, Srb=0, we have identically
Srfr=8raSrb+SrpSre,

where Sre=0 is some plane. Hence we find on replacing r and + in 4, B
and (' by [apl] and [bpl] that B
A=8[pID]f[pID], B=S[pD)f[pID], C=S[pID]f[plD]

Remembering that p=/g and that Spg=0, we have by Art. 146, Ex. 5,
0 S¢l SqD’
Sql Sif-U Slf1Y
S¢D 8if-1D SDf1D’
with similar expressions for 4 and C, where F'=nf"! is Hamilton’s auxiliary
function. Writing for the moment ¢=DS8gl—13¢D and remembering that
D and D’ operate on @ and @ solely and not on ¢ as involved in the

structure of the operators, we proceed to expand and to operate on €.
‘We have

B =(SeFIY . Sql— SeFISqD) . ¢
=8eFD3. . 8ql ~ 3m(m - 1)(m - 2) . n(SeFeSeFISql? - SeF1*SeqSql),
because by the identities at the beginning of this example
SqD'.8eFD2. ¢ =m(m - 1)(m—2)SFefFe=m(m—1)(m—2).n.SeFe,
SqD'. SeFD' . @ =m(m—1)(m—2)SFep=m(m—1)(m— 2).n.8eq=0,
since Seg=0 and S¢D’. @ =m(m—-1)(m~2).@=0.
‘We retain for a purpose the term in Segq.
In like manner
BC.Q@ =SD'FD'.SeFD' . ¢ .Sql* - SgD'(SD'FD' . Q8eFl
+9SIFD'SeFD . )Sql24-SgD'2(SeFD’ . @SIFI+28IFD' . ¢ . SeFl) . Sql.

The term S¢1’.SD’FD’. ¢ may be reduced by writing for the moment
T'=3a'SaD’, where as is easily seen ZSaa’=4. This term becomes
m(m—1)(m—2)Z8afFa’ =4m(m —1)(m ~2) . n, and hence we find

ABC.Q =S8e¢Fe.SeFD .SD'FD' . @SqP
—m(m—1)(m - 2)n(4Se FeSe FISql? — Se FeSIF1SeqSql).

From these two relations we get, if ¢ =I'Sql—IS¢D’,

(4B°—34BC)Q =(48eFe3 - 38eFeSeFe'Se Fe). ¢
=(48eF D - 38eFeSe FD'SD'FD'). @ . Sql*
—3m(m—1)(m~2).n.(SeFeSIFl— 48¢F1%)SeqSql,

and the last term vanishes because Seg=0. Now it will be observed that
the operator in the first term is precisely the same as the original operator

with D’ substituted for D'Sql - IS¢D". This remark allows us to write down
the result of operating on ¢’ in the form :

(4B~ 34BC)Q@ =(4SDFD?—3SDFDSDFD'SD'FDY). Q¢ . Sqlf
_8m(m—1)(m—2).n.(SD'FD'SIFl - 48D FI)SqD’ . ¢ . Sqlh,

B=-n ~S(DSql - [8¢D) F(D'Sql - 18D,
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the object of the retention of the term in S(fe being now apparent. But
the term we have retained vanishes by the reduction we have already made
use of. Thus Sg% comes off as a factor, and the equation of the surface is

(48SDFD"?-3SDFDSDFD'SD'FD’). Q¢ =0.]

EXAMPLES TO CHAPTER XVIL

Ex. 1. A right line meets three fixed lines aa/, b%’ and c¢¢. The locus
of the harmonic conjugate of the point of intersection on the third line with
respect to the points on the other two is the intersection of the planes

(bb'eq)(ad'cc’)+(aa cq)(bbec)=0 ; (Bb'c'q)(aa’cc’)+(ad'c'q)(Bb'ec’)=0.

Ex. 2. The general equation of a quadric through the conic

Sqf9=0, Slg=0 is 8¢ fq—SlgSl'q=0.

Find the value of ¥ in order that the quadric may be a cone having its
vertex at @ and show that the equation of the cone may be written in the
form S{¢Sla—aSlg} f{¢gSla— aSlg}=0.

Ex. 3. A plane aa’p is drawn through a fixed line aa’, and the lines in
which it meets the planes Slg=0 and Sl'q=0 are joined to the points b and
b’ respectively. The equations of the joining planes are
‘ (gaa’p)Slb — (baa'p)Slg=0 and (gaa'p)Sit’ —(Vaa'p)Slg=0,
respectively, and when p varies the locus of their intersection is the quadric
surface (¢SIb—bSig, ¢SI' - b'Sl'g, a, a')=0.

Ex. 4. The four faces of a tetrahedron pass each through a fixed point,
@, b, ¢ and d respectively. The three edges in the face p which contains the
point d lie in the planes, [, m and n respectively. The vertex ¢ opposite the
face p is the intersection of the planes

S¢lSap —SqpSal=0, SgmSbp — SqpSbm=0, SgnScp —SgpSen =0,
and the vertex ¢ describes the cubic surface
(aSql —¢Sal, bSqn — qSbm, cSqn—g¢Sen, d)=0,

having the intersection of the fixed planes as a double point.

Ex. 5. Find the locus of the vertex of a tetrahedron, if the three edges
which pass through that vertex pass each through a fixed point, if the

opposite face also passes through a fixed point and the three remaining
vertices move in fixed planes.

Ex. 6. A plane passes through a fixed point d, and the points in which
it meets three fixed lines a;a,, b,b, and ¢;c, are joined by planes to three
other fixed lines aya,, b3b,, and cge,. The locus of intersection of the planes
is the surface

(a1 (@y230,9) — ag(ay5049), by (babsbag) — ba(bidshag), ¢1(eatsesq) — ea(cieseag), &)=0.
Ex, 7. The sides of a polygon pass through fixed points, a,, a,,...a,,

and all the vertices but one move in fixed planes, [, &, ... [,;. If ¢ is the
free vertex, the next is f,g=¢8l,¢,— 8,9, and the locus of the free vertex

is the twisted cubic
[fn—lfm—2 . -fzflq, 9, “n] =0.

Ex. 8. All the sides of a polygon but one pass through fixed points
@y, Ay, ... @, g, the extremities of the free side move on fixed lines bb’ and ¢,
and all the other vertices on fixed planes I, {,,...l,4; find the surface
generated by the free side.
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Ex. 9. The points of contact ¢ of tangent planes through the line ab to
the quadric Sq7g=0 satisfy the relation ¥
fe==[abq], where n+z2{S(fufb)(ab)—S{fafb][abl}=0,

n being the fourth invariant of £, and if ¢ is arbitrary
g=Lfa, fb, fo+a{abe])
Ex. 10. If the line ab is a generator of the quadric Sq¢fg=0,
(ar®) _ _Lfarb]

[ab] =~ (ab) =a scalar.
Ex, 11. The generators of the family of quadrics Sq(af, +y/fo+2/2)g=0
compose the complex of lines of the third order represented by the deter-

minant equation
|Saf.q, Spfag, Spfapl=0 (n=1,2 or3).

() When p is an arbitrarily selected fixed point, this equation represents
a cubic cone, and every edge of the cone determines a definite quadric of the
family. The tangent planes at p to the quadrics pass through the edge of
the cone which joins p to the point [ ;p, f,, f3#]; and the tangent plane to
the cone along this edge touches at the point p the quadric of which the
edge is a generator.

(b) When p lies on the Jacobian curve
LAp, fopy f3p]=0,
the cubic cone breaks up into a plane and a quadric cone. The cone is a

member of the family of quadrics, and the plane touches at p all the
quadrics of the family which pass through p.

(c) The locus of points of contact of a plane Slg=0 with quadrics of the
family is the cubic curve in which the plane cuts the surface

@ fig, f2% .faf1)=0 H

and the locus of points of contact of pairs of the quadrics is
LAgs £t fsg]=0-
Ex. 12. The integral of the differential equation

(dg, f9)=0, or dg=fq.dt,
where f is a linear function, may be written in the form

g=¢".a,
where a is a quaternion constant of integration.

(z) This integral represents a doubly infinite family of curves, and a
determinate curve of the family passes through an arbitrary point provided
it is not a united point of the function f.

(b) The equation p=e"¥.b
is the reciprocal of the tangent line developable of the curve determined by a

if the conditions
Sba=0, 8bfa=0, Sbf’a=0
are satisfied.

(¢) An arbitrary plane which does not pass through a united point of fis
osculated by a single and determinate curve of the family.

* For another form see Art. 146, Ex. 5,
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(d) An arbitrary tangent line to an arbitrary curve of the family is cut
in a constant anharmonic ratio at the point of contact and at the points of
intersection with three of the united planes of f.

(¢) A right line which cuts the faces of the tetrahedron in points having
a certain anharmonic ratio touches a definite curve of the family, and if
p and ¢ are two points on the line

(» 9 fp, f9)=0-
(f) Any linear transformation which leaves unchanged the united points
of f, merely interchanges curves of the family.
(9) The locus of points of contact of tangent lines drawn from an
arbitrary point ¢ to curves of the family is the twisted cubic

g=(f+u)y'e;
the locus of points of contact of tangent lines drawn through an arbitrary
line ¢d is the quadric (edg fy)=0;

and the locus of points of osculation of planes through ¢ is the cubic surface
@ ¢ 13 f'9)=0.

Ex. 13. The equation of the complex of lines cutting a tetrahedron in
points having a given anharmonic ratio may be written in the form

Py ¢ 7, f)=0 where {2 B=lt=
’ ta=ly 44
is the given anharmonic ratio, £, #,, £, and ¢, being the latent roots of fand
the tetrahedron being determined by the united points of the function.
() The differential equation of curves whose tangents cut the tetrahedron
in points having the given anharmonic ratio is
(dg, ¢ fdg, /9)=0;

and a solution of this equation is

Sru
g=e St
where a is an arbitrary quaternion and where « and v are functions of z
(b) This equation includes the family of curves (compare Ex. 10, p. 286)

de

g=(f+™.a.
(¢) In general the reciprocal of the tangent line developable of the
curve («) is St
(G
p=e (F 025,
where Sba=8bfa=S8bf%a=0.

(d) The anharmonic ratio of the point of contact and of the points in
which a tangent line to the curve (2) cuts the faces of the tetrahedron

corresponding to the roots ¢, ¢, and % is
b+ -t
batu’ -ty




CHAPTER XVIIL
HYPERSPACE.

ART. 158. Many of the methods of quaternions are applicable
with but slight change to the general case of a “flat” space of
7 dimensions.

Commencing with the multiplication of two vectors or directed
lines in space of » dimensions, we may suppose the two vectors
to be transferred to one common plane or even to be made
coinitial, and we may define the product a3 very nearly in the
same manner as in quaternions. In the formulae of definition

aB=VyaB+VaB, Ba=—-VuB+VeaB, .ccooeneenn. )

V.8 or Saf is minus the projection of one vector on the other
multiplied by the length of the latter, and V,u is the directed
area of the parallelogram determined by a and (3, rotation in the
plane from a to 8 being positive. We can no longer identify
V,a8 with a vector perpendicular to the plane because in space
of many dimensions there is an infinite number of directions
perpendicular to a plane.

In particular if 4, ¢,... 1, are n mutually rectangular unit-
vectors in the space of n» dimensions, we have by (1.)

’i32= -— ]_, ?:t2= - 1’ ’I:s’l:t‘i-?:ﬂ:s:o, ............... (II.)

where s and ¢ are any two numbers from 1 to n.

The functions V,aB and VB are doubly distributive, and
hence the binary product B 1s doubly distributive. We define
for products of higher order that multiplication is thoroughly
associative and distributive, and these principles in conjunction
with (1) form an adequate symbolical basis for the whole
calculus.

If 4, and 4, are any two mutually rectangular unit vectors in
the plane of o and B, and if rotation from %, to i, is in the
same sense as that from o« to 8, we may write
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where TV,a is the number of units in the vector area V,af.
The symbol 4,2, represents a unit vector-area in the plane of af3
or in any parallel plane. This symbol 44, is of a distinct kind
from the symbols %, %,, ... 4, and it cannot be expressed as a
linear function of the latter.

In virtue of the laws of multiplication

Uly. by = —1y0 . 4y =1, and 1,.0,= —1;

and hence by (111.) the effect of multiplying a vector area into a
vector in its plane is to turn that vector through a right angle
in the plane and to multiply its length by the number of units
in the area.

For three vectors, which may be transferred to a common
space of three dimensions or even rendered coinitial, the laws of
the calculus allow us to write

aBy=VaaBy+V,aBy, ccoiviveiiiniiinin @1v.)
where V,a8y denotes the part of the product depending on sets
of three distinet units combining in the irreducible products
zlzzza, etc., and where V,aBy arises from reducible products such

a8 13= —1,, 4,¥,= —1,, 49,0, =1, In fullif a=3z;, B=2Zy i,
v =224, where x, ¥ and 2z are scalar coefficients, we find
VyaBy =Z|2yy2; | byigly, } (v.)
ViaBy = —Zy,z, Znyiy + Zmyz Ty, — 2,y 2240,

where | z,7/,2, | denotes a determinant.

The first part VyaBy of the product of three veetors represents
the directed wvolume of the parallelepiped determined by the
vectors, it being now necessary to distinguish between volumes
in different spaces of three dimensions. In particular 4.,
represents unit volume in the space of 4, i, and 4; The
function VzaBy is evidently combinatorial with respect to
the three vectors. It is unchanged when « is replaced by
a+vB+wy, etc, and it changes sign when any two of the
vectors are transposed.

We have given the expansion for V a8y in terms of the unit
vectors and of the scalars z, y, z; but there is another method of .
wide application which we may employ. It is apparent that we
must have

ViaBy=uaV,By+vBV,ay+wyVap,

where u, v and w are numbers. Interchanging 3 and vy we have
ViayB=uaVyyB+vyVeaf+wBVeay;
adding and attending to (1.) we find

Via(By+vB)=2aVBy = 2uaV By +(v+w)(BV,ay+yViah)
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and thus u=1, v+w=0. Similarly interchanging « and 8 we
find that w=1 and w+v=0, and thus

ViaBy= avoﬁy —BVoay+yVeaB v (vL)
By the same process we arrive at the result
aByd=V,aByd+ VyaByd+ VyaByd ....ccovni (VIL)

for the product of any four vectors, where

V.za,@'yS = \72‘118V076 = VyayV,86+ V2‘15V018')’ + V2/8'YV0“6
—V,88Voay+ VyydVeaB; } (vIIL)
VoaByd=VaBVyyd—V,ayV,88+ VeadV,By;

and it will be noticed that in these relations the determinant
rule of signs is in every case obeyed, namely starting with the
term aV By, the next term, in which B comes first, has a minus
sign and so on. In like manner for tive vectors

af3yde= Vi aByde+ VyaByde+ V,aByde; )
ViaByde=2+ ViaByVile; ViaByde=2+aV,Byde; |

the first terms in the sums being affected with the positive sign
and the determinant law of signs being obeyed. (Compare
Art. 147, p. 270.)

Considering more particularly the function of m vectors
Vi@ - .. am, 1t is apparent from various points of view, that it
is combinatorial with respect to the m vectors. We may prove
that it changes sign whenever any two vectors are transposed,
and hence we may deduce the combinatorial property. Adding
the products

050 .. A=Vt Vo4 Vs tete. ... ) 0505 ... am,} x)
ag,as ... A =(Vip+ V2t Vs t+ete. ... )agaya5 ... am, )

in the second of which «, and a, are transposed, the sum is
2aza, ... amVoaay. In this sum the highest terms in the units
are of the order m—2, and consequently interchange of con-
tiguous vectors changes the sign of Vy,a,a,...ap... an. Hence
transposition of any two vectors changes the sign; for example
p—1 changes of sign accompany the transference of a, to the
first place 1n the function, and p—2 changes arise when a, is
transposed with @, with a; and so on till it reaches the place
originally occupied by a,. The function consequently vanishes
"~ if any two vectors are identical, and when the vectors a are
replaced by vectors 8 which are given as linear functions of the
a, the function is simply multiplied by the modulus of the
transformation.
1Q. U
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Generally any function such as
4 Vyaanas ... apVon-plpridyte - tm
is combinatorial with respect to the vectors, and when we
express the m vectors « in terms of m mutually perpendicular
vector units in their m-space, we find that
l'm

lp (m=p

This includes a number of relations such as

3VyaBy=aVyBy—BVsay+vVyab:
aVyByd—BVayd+yV,aB8—8VaBy=0 if V,aBvyi=0.
Again when the m vectors lie in a space of m—1 dimensions.

so that they are linearly connected, we have relations of the
form

Vontytty oo =24 Vya,a, ... ttp Vo - plp 4 10p 42 + + « Gape (X1)

Vo vee Q-1 Vgtyt
3 tmo2ely e Gmol lotn, s (X11.)

= Vin-104a00g .o OG-y
which may be verified by operating with Via,, etc. In particular
for two and three dimensions, we recover the formulae, Art. 27
(111.) with Spa8=0 and Art. 26 (11.).

The theory explained in this article may be compared with
Grassmann’s Ausdehnungslehre* Grassmann’s inner product
of two quantities is the funetion —Vyaf, and his outer product
of a;, ay; ... am 18 Viuaydty +.. am.  These so-called products are thus
only parts of a complete associative product.

Art. 159. There is a remarkable difference between this
general theory and the theory of quaternions which may be
illustrated by a special example. The sum of a number of
vector areas is not an area vector, or the homogeneous quadratic
function of the units

A=Vyad +V 88+ Vayy + etecovrieerernnnne. (1)

cannot generally be expressed in the form Vpp". The geometrical
reason for this is that two planes, for example p=2x1, 4,2, and
p=x4is+a,,, have not necessarily a common line although they
may have a common point—the origin of the vectors p in the
example.

To discover a canonical system of vector units in terms of
which a homogeneous function (g) of order m may be expressed,
observe that gp=V,19p+ Vu-19p, and that the line vector
V,qV.-19p is not generally parallel to p but that it is a linear
and distributive function of p. We are thus led to consider the
linear and distributive function

D =V1qV,s10p, e (1L)
* See Proc. R.I.A., 3rd Series, vol. vi., pp. 13-18 (1900).
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and because
Viegp=V,.09Vi_-19p="V,. Vi-10qVii-19p
= Vo . ‘rm—lqo'vm—lpq = Vo . ‘fm— 1Pq‘71n—1q0' = Vopt,bd',

the function ¢ is self-conjugate, and just as in quaternions its
axes are all real and mutually rectangular.

In particular for the quadratic A4, let ¢, be an axis of
¢p=V, AV, Ap so that ¢i;=a,i,, where a,, is a scalar.
_ Then ¢V 44, =V, AV, AV, Av=V A¢i, =a,V,4%, and V, 43,
18 also an axis and it is perpendicular to i, and parallel to 4,
suppose. This shows that in terms of the canonical units

A= 6012?:1’£2+ ami3i4+ vee +(Lgm_l’g,-n’l:gm_l?:gm, ......... (III.)

so that a quadratic in 2m+1 or in 2m units may be reduced to
m terms involving pairs of units, or to the sum of m area vectors.
There is obviously indeterminateness in the units to the extent
that 7, may be any unit in a definite plane—that of ¢, and 4,,
and 4; may be any unit in another definite plane, and so on.
. An expression such as 4 corresponds to an angular velocity
in the space of three dimensions. Consider the transformation
which converts line vectors (p) into line vectors (o=g¢p) and
which preserves unchanged lengths and mutual inclinations, so

that ’ ’ ’
Vioo'=Vopppp'=Vopp'

If o is an axis of this function and ¢ the corresponding root,
we have tta?=V,pa=Vya?=c?,

and therefore {=1 or else «2=0. The former alternative cor-
responds to non-rotated directions. The latter requires a to
be of the form 4,4+a/—1.4,—a vector perpendicular to itself
directed to one of the circular points at infinity in the plane
of i, and 4, (Ex. 1, p. 96). Corresponding to this there is
a conjugate axis, «'=4%,—a/—14, Again if B is any other
axis corresponding to the root s,
tsV,aB=VopagpB= Ve,

so that axes, corresponding to roots which are not reciprocals
one of the other, must be perpendicular. From this it appears
that the transformation is specially related to a set of hyper-
perpendicular planes, 44, %, etc, and that it consists .of
ordinary rotations in each of these planes, so that we may write

— -1
aT =
°q L }...(IV.)
where =01592955 +--q2in-1, 2ms Q10 ="0C08 §t15 41415 8In $ty,

and where the factors q,,, g,,, etc., are commutative because we

have
ytalaly = T4l lty = Tglylyly
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Also we have Tty iy =1"= — L.
It may at once be verified that the operator ¢:2(  )gy,~ " has no
effect except on vectors in the plane of 4,1, and that it turns
vectors in this plane through the angle a,,.

Now we may write (Art. 29 (V.), p. 28)

Qa=(tyly) " =€ -
and because the factors are all commutative we may also write
Haiiataniaist.) 34

g=e =€  eieeieins e (v)
(compare (111.) and Art. 29 (X.)), and the rotation is effected by
4 -4

the operator ¢ ( )e .
For a small rotation, if dt is a small scalar whose square is to

be neglected,
pAdt  —pddt
ag=e pe =(1+%Adt)p(1—J_;Adt):p-l—dtVlAp, (VL)
and thus A plays the part of an angular velocity.*

ART. 160. For projective geometry in m space we may use
the method explained in the last chapter, and the symbol for a
point is the sum of a scalar and a vector, so that

v
q=VoQ+V1q=<1+V——5>VOq=(1 +OQVyg cereee (1)

represents a point of weight Vg at the extremity of the vector
Vig: Vg

The equation o ¢ ¢ 4 t.a,4ete. ...t lmlm oveevnnieennn(TL)
represents the (m —1)-flat which contains the points a,, &y, ...

In accordance with Hamilton’s notation, we shall write

[dytty .. @) =Vm. V2,V 05 ... Vitlm
—34 V. ViagViag . Vi Voay 5

or briefly, [@]m=Va[@ln+ Vi-1[@lm, coooeevieiianee (111.)
as the symbol of the (m—1)-flat containing the m points a. To
show that this symbol really determines the flat, observe that
we have
[@]m={ Vmyas--- am— Vin-1(cs— a,)(az— a)-- (am = a)  TTV gy, (1V.)
where a,Vyt,=V,a, and where IIV,a, is the product of the
weights of the points (Art. 144 (1v.)). Now Vaaya ... am O

Vonay(ag—ay) .- (am—a,) is the directed region determined by the
origin and the m points, and Vi _1(a,—ay)(ag—ay) .- (am—ay) 18

*See Proc. R.1.A., Series IIL., vol. v., pp. 73-123.
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that determined by the m points. Denoting the latter by
i1y ... tm_1R, where R is the magnitude of the region determined
by the m points and where 4,4,...%m-1 are mutually perpen-
dicular unit vectors in the flat, the symbol becomes

[@]m= (@ = yigiy e i1 RV, oo v.)

where & is the component of the vector @, which is perpendicular
to every line in the flat, or in other words, where & is the vector
perpendicular from the origin to the flat. But when we know
& and the product of the vectors i we know the flat,* and we

have. _ _ Valaln

Vm—][a]m

where U has ifs quaternion signification. We notice also that
the point o 1 Vot [t .

m=lt oy el

is the reciprocal with respect to the auxiliary quadric Vyq?=0 of

every point in the flat—in other words, this point is the point

in the m-flat of the origin and of the m points a which is

reciprocal to the (m —1)-flat of the points a.
In point symbols the equation of the flat is

[qa,cs .. ] =0y coveeiniiiiininnn (viiL)
the vanishing of this equation being equivalent to (IL.).

Other general expressions admit easily of interpretation on
the principles laid down in this article.

and iy ... tmo1= — UV _1[@]m, -..(VL)

* The vector equation of the flat is p=T + Zayi,.
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Aberration, 85.

Academy, Royal Irish, 101, 152, 163,
164, 263, 306, 308.

Acceleration, trajectory of point under
uniform, 64 ; relative, 171 ; angular,
171; centre, 172; of a particle, 184
et seq. ; of a rigid body, 194 et seq.

Activity of forces on element of strained
medium, 240 ; of electric and mag-
netic forces, 251.

Addition of vectors, 1; of quaternions,
9; of vector-arcs, 16; of weighted
points, 264 ; of vector areas in hyper-
space, 306.

Algebra, vectorial, 11.

Algebraic sign —, use of, 2.

Algorithm of ¢, j, k, 11; for hyper-
space, 303

Almucantar, example on, 176.

Amplitude of versor, 27.

Analytical expressions for V, 74, 225.

Anchor-ring, 59.

Angle of quaternion, 13; differential of,
69 ; directed, 30; Eulerian, 33; of
intersection of spheres; 50 ; element
of solid, 86 ; of contact, 134; of tor-
sion, 134 ; subtended by vortex ring,
solid, 235.

Angular acceleration, 171 ; momentum,
184, 195; velocity, 170, 187; of
emanant, 132; of strained element,
212; in hyperspace, 307.

Anharmonic coordinates, 43 ; equation
of sphere in, 54; in relation to
weighted points, 269 ; ratio of collin-
ear points, 41, 45; of four points in
space, 56 ; of points on a conic, 267 ;
generation of hyperboloid, 65; pro-
perties of ruled surface, 139; of
twisted cubic, 268 ; unaltered by
linear transformation, 272 ; complex
of lines cutting faces of tetrahedron
in constant, ratio, 302.

Anisotropic medium, 243, 251.

Apparent double points, 292.

Appendix to new edition of Elements of
Quaternions, 99, 135, 211,

Arc, vector-, 17; eyclic, 118; of curve,
134.

Area, directed, 23 ; of spherical triangle,
33; -vector in hyperspace, 303.

Areal coordinates, 48; velocity, 186 ;
equation of continuity, 230.

Aronhold’s notation, 213, 297.

Aspect of plane, 23,

Associative addition of vectors, 2;
multiplication of 4, j, k, 10; of quat-
ernions, 11, 119 ; of vectors in hyper-
space, 303.

Astaties, 160.

Astronomy, examples from, 84, 85, 130,
174, 188.

Asymptote of conic, 64 ; of curve, 152,

Asymptotic cone, 107 ; lines on surface,

5.

Attraction to fixed centre, particle
moving under, 1835, 186; Green’s
theorem, 218; spherical harmonics,
222.

Ausdehnungslehre, 306.

Auxiliary functions, x and y, 90, 91;
F, G and H, 274; quadric, 266 ; for
hyperspace, 309.

Axes of linear vector function, 94 ; of
self-conjugate function, 96 ; of quad-
ric, 111; of section of, 111; of screw-
systems, 163 ; moving, 171 ; for curve,
134 ; for surface, 146 ; for orbit, 188;
for body, 196; of inertia, 197; of
elastic symmetry, 245.

Axis of quaternion, 13; radical, 51 ;
Poinsot’s central, 156, 169; instan-
taneous, 170.

Ball, Sir R. 8., theory of screws, 156,
163, 170, 203, 205.
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Base-point, 171, 195.

Bilinear function, 297.

Binet’s theorem on axis of inertia, 197,

Binormal, 134.

Biquadratic equation of linear quater-
nion function, 274,

Biquaternions, 20, 58,

Bisecting sides of spherical triangle,
triangle, 31.

Bedy, rigid, dynamics of, 196 et seq. ;
under no applied forces, 198 ; dyna-
wically equivalent to four particles,
199; dynamical constants of, 199,
202, 207; impact of, 203; con-
strained, 204; resultant force and
couple on gravitating, 225; moving
in fluid, 241.

Bonnet’s theorem, 192,

Brachistochrone, 192.

Bright curves on surface, 87.

Bulkiness of fluid, 240,

Burnside, theory of groups, 104.

Callglzlllls, icosian, 104; of variations,

Canonical, form of V, 75 ; of two linear
functions, 100 ; of screw-systems,
164 ; equations of quadric and linear
complex, 278 ; vectors for rotation in
hyperspace, 307.

Cavity filled with liquid, motion of body
containing, 241.

Central, sections of quadric, 111 sur-
faces, non-, 117 ; axis of forces, 156,
163 ; of displacement, 169; orbit, 186.

Centre, mean, of tetrahedron, 5; of
mass, 5, 264 ; of circle inscribed to
triangle, 48 ; radical, 52 ; of quadric,
117; of curvature of curve, 134; of
spherical curvature, 136; locus of
mean, of corresponding points, 152;
of forces, Hamilton’s, 157 ; astatic,

- 160 ; of three-system of screws, 164 ;
particle attracted to, 185, 186.

Centres, of curvature of quadric, 122;
surface of, 125; of surface, 144 ; of
generalized curvature, 286, 295.

Chain on surface, equilibrium of,
166.

Characteristic surfaces in optics, 228.

Characteristics of curves and surfaces,
numerical, 290.

Charpit’s differential equations, 151.

Chiastic homography, 208.

Circle, inverse of line, 53 ; at infinity,
imaginary, 54; monomial equation
of, 55 ; quaternion equation of, 58 ;
vector equation of, 82; ellipse pro-
jected into, 83 ; osculating, 134, 136,
152; surface generated by, 134;
excluding point from integration,
217.
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Cireuit, integration round, 73, 215;
circulation and flux, 232; moving in
perfect fluid, 238 ; electro-magnetic,
249,

Circuitation equations for electro-mag-
netic field, 250.

Circular, points at infinity, 96, 126
sections of quadric, 113; of cone,
118; in relation to strain, 178;
tangent cylinder, 115; point at in-
finity in hyperspace, 307.

Circulation of vector, 232.

Circumscribed developable of confo-
cals, 126 ; generalized, 286.

Clifford, biquaternions, 21.

Coaxial, spheres, 51, 53 ; linear vector
functions, 95, 97 ; stress and strain
functions, 238.

Co-efficient, differential, 63, 67; of
friction, 190; of restitution, 204;
virtual, of screws, 206 ; of viscosity,
239.

Coelostat, example on, 130.

Coincidence, of axes of function, 94 ; of
united points, 275.

Collinearity, of three points, 5, 37,
266 ; of three planes, 39.

Collision of two bodies, 203.

Combinatorial functions, 265, 270, 304.

Commutative, addition of vectors, 1;
multiplication, 17; order of differ-
entiation, 79 ; linear functions, 95;
small displacements, 169 ; strains, 182,

Complementary curve, 291.

Complex, or imaginary, 3, 20, 58 ; nt®
roots of quaternion, 28; of right
lines, 40 ; surfaces formed by lines of,
153 ; related to astatics, 161 ; of axes
of inertia, 197 ; linear, 275 et seq. ; of
linesconnecting corresponding points,
278; of generators of systems of
quadrics, 301 ; tetrahedral, 302.

Composition, of wrenches, 164, 204;
of displacements, 168.

Concurrence of four planes, 39, 267.

Concyeclic quadrics, 121.

Conductivity, electrical, 251.

Cone, tangent to sphere, 49 ; to quadric
108; to confocal, 124 ; standibhg on
curve, 65 ; of axes of system, ¢, + ¢,
101 ; asymptotic, 107 ; edges of, in
plane, 110; and sphero-conic, 1183
through five lines, 121; of revolu-
tion through three lines, 126 ; differ-
ential equation of, 149; tangent to
generalized confocal, 281.

Confocal, quadrics, 121 ; tangent cornes,
124; vector equation of, 124 ; re-
lated to astatics, 162; related to
axes of imertia, 197; equipotential
system, 228; generalized confocals,
979 ; quaternion equation of, 286.
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Congruency of lines, 41; surfaces
generated by lines of, 153; focal
and extreme points, 153; of axes
of three-system of screws, 164,
103.

Conic, related to triangle, 48; vector
equations of, 63; focal, 114, 126;
sphero-, 118; and Pascal hexagon,
121 ; orbit, 187 ; on wave-surface,
261 ; in point symbols, 264, 267 ;
anharmonic property of, 267.

Conical refraction, elastic solid, 248;
dielectric, 260.

Conical rotation, represented by
q( )g-1, 18; related to spherical
triangle, 32; in terms of Kuler’s
angles, 33; inscribed polygon, 55 ;
examples, 60; differential of qag~1,
69, 169; and linear function, 100 ;
and astatics, 160; finite displace-
ments, 168 ; examples, 173; strain,
178 ; and linear quaternion function,
283 ; in hyperspace, 307.

Conicoid, see Quadric.

Conjugate, of quaternion, 12; of pro-
duct, 15 ; radii of conic, 63; of linear
function, 89 ; axes of function and of
its, 94 ; quadric, 107 ; radii of qua-
dric, 110, 112; of quaternion function,
278, 275 ; tangents, 295.

See Self-conjugate.

Connected region, 217,

Conservative system of forces, 184 ;
acting on perfect fluid, 238.

Constant, curve having ratio of curva-
ture to torsion, 137.

Constants of linear function, 88, 178 ;
vector, of integration, 137, 186 ; dy-
namical, of rigid body, 199, 202, 207;
elastic, 239, 244 ; dielectric, 251 ; of
quaternion function, 272,

Constrained motion of particle, 189;
of rigid body, 204.

Construction of product of two quater-
nions, 15; fourth proportional to
three vectors, 31; ellipsoid, 114;
vectors related to wave in dielectric,
259,

Cantact, of line and sphere, 49; and
quadric, 107; and confocals, 124;
four point, of tangent, 298.

Continuity, equation of, 72, 230, 238 ;
areal and linear, 230.

Convention respecting rotation, 7 ; nota-
tion, 20.

Convergence of vector, 72, 212,

Co-ordinates, six, of a line, 40 ; anhar-
monic, 43, 48, 54, 269; curvilinear,
66, 74, 227 ; Cartesian, 75 ; elliptic,
5(2;1, 286; homogeneous or tetrahedral,

8.
Coplanar versors, 27.

INDEX.

Coplanarity of four points, 5, 38; in
point symbols, 266.

Co-reciprocal screws, 206.

Co-residuals on cubic, 101.

Correspondence, see Homographic,
Transformation.

Covariant linear functions, 101, 290.

Cremona transformation, 101.

Cross ratio, see anharmonic.

Crystalline medium, damped oscilla-
tions in, 186 ; propagation of light
in, 256.

Cubic, of linear vector function, 93, 100;
twisted, 93, 104 ; cone, 101; twisted,
locus of feet of normals, 109; of
points of contact with confocals, 123
tangent line and osculating plane,
133; related to moving body, 172;
developable generated by, 267 ; locus
of points in perspective with corre-
spondents, 278; transformation of,
285 ; characteristics of, 293.

Curl of vector, VVg, 73, 213.

Current, electric and magnetic, 250.

Curvature, of curve, 132 ef seq.; of
surfaces, 141 et seq., 215 ; of quadric,
122, 125 ; of orbit, 189 ; generalized,
286, 295.

Curve, in terius of parameter, 62; of
intersection of confocals, 125; me-
trical properties of, 131 ef seq. ; uni-
cursal, 152 ; intersection of quadrics,
285 ; complementary, 291 ; character-
istics of, 292,

Curves, family of, 148 ; g = ( f-+t)™a, 286;
q=¢. a, 301.

Curvilinear coordinates, 66, 74, 124,
226.

Cusp, condition for, 63, 83.

Cuspidal edge, 126, 136, 268, 286.

Cyeclic planes of quadric, 113, 178; arcs
of sphero-conic, 118.

Cyeclical transposition under sign S, 16.

Cycloid, 83, 193.

Cylinder, right circular, 45; standing
on curve, 65; circular tangent, to
quadric, 115; case of general quadric,
117 ; geodesic on, 137; torsal tangent
planes of, 140 ; differential equation
of, 149 ; related to astatics, 161.

Cylindroid, 84, 165.

D symbol of differentiation, 229; of
operator analogous to V, 296.

Damped oscillations, 186.

Deformation of surfaces, 145,

Degraded, cases of quaternions, 9, 19;
symbolic equations, 95, 275.

Degree, see Order.

Degrees of freedom, 204.

Delta, Hamilton’s operator V, 70, 211.
See Operator.
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De Moivre’s theorem, 27.

Derivative, 63.

Determinants and combinatorial func-
tions, 270, 305.

Developable surface, 65 ; circumseribing
confocals, 126 ; related to curve, 135,
139; generated by tangent planes
along curve on surface, 142; of twisted
cubic, 267 ; circumscribing quadrics,
280; tangent-line, of two quadrics,

- 282; circumscribing generalized con-
focals, 286. "

Development of quaternion function,
79, 85; of vector of curve in terms

" of arc, 134.

Deviation trom osculating curve, 152.

Diaphragm, 217.

Dielectrie, 251 et seq.

Difference of two points, 263.

Differential, 63, 66 ; condition for per-
fect, 74, 86, 214 ; indeterminate, 87 ;
of equation of surface, 142; equation
of geodesic, 141, 152; of lines of
curvature, 144, 147 ; of family of
surfaces, 149; of curves traced on
surfaces, 287.

Differentiation, chap. vIL., 62; general
formula, 66 ; successive, 79; with
respect to moving axes, 167 et seq. ;
of deformable elements, 212 ; follow-
ing moving point, 229.

Diffusion of electromagnetic disturb-
anee, 255.

Dilatation in strain, 178.

Direct and inverse similitude, 14.

Directed area, 23; angle, 31; curva-
ture, 132, 141 ; volume in hyperspace,
304.

Discontinuity in integration, 216.
Displacement, of a body, 18, chap. x1L,
168 ; in strain, 180 ; electric, 250.

Dissipation function, 240, 252.

Dissociative multiplication, 11.

Distortion of elements, 212, 229; of
viscous fluid, 238.

Distributive, maltiplication of vector
by scalar, 4; by vector, 8; property
of scalar of product, 6; of product,
9 ; of differential, 66 ; of linear func-
tion, 88; multiplication for hyper-
space, 303.

Disturbance in electromagnetic field
propagated by waves or by diffusion,
255

Divergence of vector, 212,

Division, of vectors reduced to multi-
plication, 11; homographic, 41, 65,
152, 264.

Dodecahedron, 104.

Double points, on wave surface, 248,
261 ; apparent, 292; on Jacobian, 298.

Duality for point symbol, 265.
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Dynamical constants of a body, 199,
202, 207.

Dynamics, of a particle, chap. xIv.,
184; of system and rigid body, chap.
Xv., 194; of continuous medium, 236;
electro-, 249.

Eight square roots of linear function,
99 ; umbilical generators, 125; gen-
eralization of, 279, 286; genervators
which are also normals, 279.

Elastic solid, isotropic, 222, 239; aniso-
tropic, 242 et seq. ; symmetry, 245.
Electro-magnetic theory, 249 ef seq. ;

of light, 256.

Element, rate of change of, 212, 229.

Elements of Quaternions referred to,
1,3, 7,29, 31, 34, 45, 53, 55, 56, 59,
82, 85, 114, 118, 120, 121, 132, 156,
157, 197, 211, 264 ; appendix to, 99,
135, 211,

Elimination of a vector, 39, 105.

Ellipse, vector equation of, 63, 82 ; pro-
jected into circle, 83; parallactic, 855
aberrational, 85 ; differential equation
of surface generated by, 149 ; related
to astatics, 163 ; locus of feet of per-
pendiculars on generators of cylin-
droid, 166 ; in conical refraction, 261.

Ellipsoid,* Hamilton’s construction for,
114 ; vector equation of, 152 ; strain,
177.

Ellipsoidal linear function, 178.

Elliptic, logarithmic spiral, 82; co-
ordinates, 124; functious, 198 ; gen-
eralized, co-ordinates, 286.

Elongation, 181.

Emanant, 131, 138.

Energy equation, for particle, 184, 1875
system of particles, 194 ; rigid body,
197 ; for impulses, 200; for contin-
uous medinm, 239; in electro-mag-
netic theory, 251 ; function, for elastic
solid, 243 ; for dielectric, 252.

Envelope, examples, 128,129 ; differen-
tial equation of, 149, 151; wave-
surface as, 248, 257.

Epicycloid, 83.

Equality of vectors, 1; vector-arcs, 17;
points, 263.

Equilibrium, static, 156 ; astatic, 160.

Equipotential surfaces, 227.

Euler’s angles, 33; four square identity,
16; exponential formulae, 28;
theorem on curvature, 143; equations
of motion of rigid body, 196; of fluid,
230, 238.

Evoked wrench, 204.

Evoluates on polar developable, 139.

*See Linear vector function, the use of an
ellipsoid being to a great extent superseded.
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Exact differential, 74, 86, 214.

Excentricity of orbit, 187.

Excess, spherical, 33.

Expansion, of quaternion function, 79,
83 ; of vector of curve in terms of arc,
134 in series of spherical harmonics,
223, 224.

Ex{)onentia] of quaternion, 28, 34;
d (i)ﬁ’erentia.l of, 86; for hyperspace,
308.

Extreme points on line of congruency,
154.

Families of curves and surfaces, 148.

Family of equipotential surfaces, 227;
ofO curves, q=(f+¢)y"a, 286; g=e%a,
301.

Five vectors, 43, 44, 54 ; quaternions,
43, 269 ; points linearly transformed
into tive, 272 ; surfaces, 291,

Flat space, 303 ; symbol of, 308.

Flow of a vector, 231.

Fluid, motion, 72, 229, 236; viscous,
238, 240 ; motion of solid in, 241.

Flux through circuit, 233 ; strength of
tube of, 233, 235; in electro-magnetic
theory, 249; of radiated energy,
Poynting, 252, 257.

Focal, property of quadrics, Salmon’s,
114; form of equation, 116; for
sghero-conic, 120 ; conics on develop-
able, 126; points on line of con-
gruency, 153; conics related to
astatics, 162.

Foci of central sections of quadric, 129.

Force, moment of, 23 ; in statics, 156 ;
in dynamics, 184, 194 ; central, 186 ;
impulsive, 200; electric and magnetie,
251 ; in electro-magnetic field, me-
chanical, 255.

Forces, reduction to two, 158; con-
servative, 184, 238; of interaction,
194 ; system of forces, see Wrench.

Formula, A, 11; B, 8; of differentiation,
66.

Formulae, depending on products of
vectors, chap. 111, 23; of trigono-
metry, 25, 30.

Four numbers involved in quaternion,
9 ; squares, identity conuecting, 16 ;
vectors, identities connmecting, 24;
symmetrical relations for, 42 ; linear
function rendering four vectors par-
allel to, 92; particles equivalent to
rigid body, 199; -system of screws,
206 ; consecutive points on tangents

" to surfaee, surface through, 298.

Fourth proportional to three vectors,

Frac.tions, relations reduced by partial,
122

Free:iom, degrees of, 204.

INDEX.

Fresnel, 163, 262.

Frictional constraint, 190.

Function, anharmonic, of collinear
points, 41, 45, of points in space, 56,
on a conic, 267 ; linear vector, 88;
elliptic, 198 ; dissipation,240; energy,
for elastic solid, 243, for dielectric,
252 ; combinatorial, 270, 304 ; linear
quaternion, 272.

See Linear function.

Fundamental formulae of trigonometry,

plane, 25 ; spherical, 30.

Gate, self-closing, 207.

Gauss, operator, 104; measure of cur-
vature, 144,147 ; integration theorem,
215.

Generalised, normal, 279; curvature,
286, 295 ; geodesic, 287.

Generation of ruled quadric, 65; of
ellipsoid, 114 ; of ruled surface, 137.

Generators of quadric, 103, 116 ; um-
bilical, 125 ; common, and of linear
complex, 278 ; generalized umbilical,
279, 286; eight, are also normals,
279 ; complex of, of doubly infinite
family of quadrics, 301.

Geodesic on cylinder, 137 ; differential
equation of, 141, 152; curvature, 141,
148; Joachimstal’s theorem, 152;
motion of particle along, 190; gen-
eralized, 287.

Geometrical meaning of invariants, 98,
288.

Geometry of Three Dimensions, Salmon’s,
291, 292, 298.

Geometry, projective, chap. XvII., 263,
308.

Gilbert’s theorem on confocals, 124.

Grassmann, 306.

Graves, R. P., Life of Hamilton re-
ferred to, 16, 211.

Gravitating body in field of force, 225.

Green’s theorem adapted to quaternions,
219.

Groups, theory of, examples relating to,
80 ; referred to, 104.

Half-line, half-cone, 45.

Harmonic, mean of two vectors, 41, 50,
56, 109; properties of triangle, 45,
of polar and quadric, 50, 109;
spherical, 70, 76, 222 et seq.

Hathaway, A. S., 270.

Heaviside, Oliver, 11, 249, 250, 253.

Helix, vector equation of, 64, 82;
vector twist of, 133 ; constant curva-
ture and torsion, 137; osculating,
152 ; particle moving on, 191.

Herpolhode, 198.

Hessian of surface, 297.

Hexagon, Pascal, 121.
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Higher Plane Curves, Salmon’s, referred
to, 101, 105.

Hodograph, 83, 187, 189,

Homographic, ranges, 41, 42, 264 ;
locus of line joining corresponding
points, 65; locus of mean centre of
points on, 152; screw-systems, 208 ;
correspondence of points on twisted
cubies, 285.

Homography, chiastic, 208.

Hooke’s law, 243

Hydrodynamics, 72, 228 et seq.

Hyperbola, 64; section of quadric,
rectangular, 111 ; focal, 114.

Hyperboloid, homographic generation,
65, 264 ; locus of transversals, 103,
270; generators of, 116; line of
striction of, 140 ; equilibrating forces
on generators of, 158,

Hyperspace, chap. xviiL, 303.

Hypocycloid, 83.

Hysteresis, 251.

Icosian calculus, 104.

Identity, Euler’s four square, 16; con-
necting four vectors, 24 ; five quater-
nions, 269.

Tkosahedron, 104,

Imaginary, of algebra, 3, 20, 58 ; nt»
roots of quaternions, 28 ; roots and
axes of linear function, 95, 96, 177 ;
conjugate, vectors, 95, 224, 307;
united points of linear transforma-
tion, 275, 276.

Impact of two bodies, 203.

Impulse, 200.

Impulsive wrench, 201, 204; genera-
ting motion of solid in fluid, 241.

Indeterminateness of versor of null
quaternion, 19; of tensor of bi-
quaternion, 21 ; of a differential, 87 ;
in solution of equations, 92; of axes
of linear function, 95, 96 ; of square
roots of function, 99; in value of
function, 216 ; related to conical
refraction, 248, 260; of normal to
plane in hyperspace, 303.

Index-surface, 248, 261.

Induction, magnetic, 250.

Inertia function for rigid body, 196 ;
Binet’s theorem on axes of, 197;
deduced from observed motion, 199,

202, 207 ; related to [gdm, 225.

Infinites in field of integration, 216, 219.

Infinity, anharmonic equation of plane
at, 44, of circle at, 54; vector to
circular points at, 96, 126, 307;
vector representing point at, 263 ;
equation of plane at, 266.

Inflexion on curve, 83.

Initial positions in astatics, 160.
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Inscription of polygon to sphere, 55, 56.

Instantaneous twist-velocity, 170, 201;
orbit, 188.

Integrability, condition of, 74, 86, 214.

Integrals, line, 73, 215, 219, 231 ; sur-
face, 72, 215, 219, 233 ; variation of,
192, 231, 233.

Intensity of wrench, 163.

Interaction of particles, 194, 200, 236.

Interpretations and formulae, chap 1I1.,
23; for projective geometry, 263
et seq.

Intersection of, line and plane, 35, 267,
269 ; planes, 39, 267, 269, 306; two
lines, 39, 267 ; line and sphere, 49 ;
spheres, 50, 54 ; confocals, 121, 123,
125 ; quadrics, 285 ; generalized con-
focals, 286 ; curve and complemen-
tary, 292 ; of two surfaces, osculating
plane to carve of, 296,

Invariants, of linear vector functions,
91, 97 ; geometrical meaning of, 98 ;
of two functions, 100; derived by
operation of V, 102 ; dependingon V,
211; of linear quaternion function
274 ; of quadrics and linear trans-
formations, 288.

Inverse, or reciprocal of vector, 11; of
product 12 ; similitude, 14; trans-
formation, 90 ; operations of V, 218.

Inversion, geometrical, 52, correspond-
ing elements in, 69 ; of linear func-
tions, 90; of ¢+1¢, 100; of Vv, 218;
of linear quaternion function, 273.

Involution on ruled surface, 140.

Irrotational distribution of vectors,
234.

Isothermal surfaces, 227.

Isotropic solid, 222, 239.

Jacobi, differential equations, 86.

Jacobian, or functional determinant,
213 ; of four guadrics, 293 ; of sur-
faces, 295, 298.

Joachimstal’'s theorem on geodesics,
152,

Joulian waste of energy in electro-mag-
netic field, 252.

K, symbol for conjugate, 12 ; differen-
tial of Kgq, 68.

Kelvin, Lord, flow along curve. 231.

Kinematical treatment of curves, 134 ;
of surfaces, 137, 145.

Kinematics, chap. x11., 168; of con-
tinuous medium, 228.

See also Motion.

Kinetic energy, of particle, 184, 187 ;
of system of particles, 194 ; of rigid
body, 197 ; changed by impulse, 201,
207 ; of portion of continuous med-
ium, 239,
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Kinetics of a particle, 184; of rigid
body, 194; of continuous medium,
236.

Knott, C. G., 11.

Lagrange, motion of flaid, 230, 238.

Laplace’s operator, 75, 227 ; inversion
of, 220.

Latent roots of linear function, 93, 96 ;
linear quaternion function, 274, 276.

Lectures on Quaternions referrel to, 1,
7,21, 59, 114, 115, 121, 211.

Lie, Sophus, 86.

Light, electro-magnetic theory, 256.
See Optics.

Limiting, points of coaxial spheres, 51 ;
ratios, 63.

Line, chap. v., 35; six coordinates of
40 ; inverse of, 53 ; of striction, 138,
140; of curvature, 144; in point
symbols, 266 ; unaltered by linear
transformation, 272; traced on sur-
face, 287, 295.

See Complex, Curve, Generator, In-
tegral.

Linear, relation connecting four vectors,
5, 24, 25; and distributive function,
66 ; vector function, chap. vIIL, 88;
related to quadrics, chap. 1x., 106;
to surfaces, 142 ; to astatics, 159; to
theory of screws, 164, 205 ; to accel-
eration of point of body, 172; to
strain, 177 ; to vibrations of particle,
186 ; to angular momentum of rigid
body, 196 ; to operator V, 211 ; to
stress, 237, 243 ; to electro-magnetic
field, 251 ; to theory of light, 258 ;
equation of continuity, 230 ; relations
connecting five yuaternions, 268;
quaternion function, 272 et seq. ;
complex, 275; transformation, in-
variants of, 288.

Logarithm of a quaternion, 29.

Logarithmic spiral, 82,

Lorentz, H. A., 229, 249, 251.

Lunar theory, example on, 188.

Mc¢Aulay, A., 21, 211, 218.

MacCullagh, index-surface, 248.

Maguetic force, 249; permeability, 251.

Maximum and minimum, 80, 111, 127.

Maxwell, J. Clerk, sense of rotation, 7 ;
curl of vector, 213 ; electro-magnetic
theory, 249.

Mean, point, 5; harmonic, of two
vectors, 41, 50, 56, 109 ; centre of
corresponding points, 152 ; in point
symbols, 264.

Measure of curvature, 144, 147.

Mechanical force in electro-magnetic
field, 251.

Medium, continuous, 228, 236, 251.
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Meusnier’s theorem, 141,

Minchin, 183.

Minding’s theorem, 162.

Moivre’s, de, theorem, 27.

Moment, of force, 23 ; resultant, 156;
quaternion, 157, 159 ; of momentum,
184, 195, 196 ; of inertia, 196.

Momentum, 184 ; moment of, 195, 196 ;
of portion of medium, 236; of solid
and fluid, 241.

Monomial equationsof circle and sphere,
55.

Motion, three-bar, 60, 85 ; of point on
curve, 62; generating roulette, 83, 84;
apparent, 84 ; relative, 171, 174; of
body under no forces, 198; of con-
tinuous medium, 228, 236.

Moving axes, 171; for curve, 134; for
surface, 146; fororbit, 188; for body,
196 ; for electro-magnetic field, 253.

Multiple-valued function, 216 ; point
on Jacobian, 298.

Multiplication, by scalars, 3; distribu-
tive, 9; associative, 11; of versors,
versor-arcs, 16 ; symbolical, table for
S,V,K,T,U, 19; hyperspace, 303 ; in
Auwsdelmungslehre, 306.

Mutual potential, 223.

Mutually rectangular vectors, system
of three, 10; relations connecting two
systems, 33; axes of function, 96, 97;
vectors transformed from, 98 ; nor-
mal to confocals, 123 ; related tocurve,
134; to surface, 146; examples relat-
ing to, 173.

Negative unity, square of unit vector
is, 10, 17 ; square-root of, 3, 20, 58 ;
see Imaginary.

Non-central surfaces, 117.
Non-commutative, multiplication, 83
addition, 16 ; displacements, 168.

Nonion, see Linear vector function.

Normal, to surface, 65, 139, 144 ; to
quadric, 108, 123; to curve, 134;
and tangential resolution of force,
185, 189 ; solutions, 256 ; generalized,
279 ; generator as well as, 279.

Notation, conventions respecting, 19;
for projective propevties of surfaces,

See Symbol.

Nullifier, 21.

Number of constants of linear func-
tion, 88, 178, 272, 283. ]

Numerical characteristics, order of
cone and surface, 101; of curves, 290.

O’Brien, Rev. M., 11.
Octahedron, regular, 45, 104.
Qctonions, 21.

Ohm’s law, 251.
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Operator, quaternion as, 14; V, 70 et
seq., chap. XvI, 211; various ex-
pressions for V, 74, 225; applica-
tions of V to Taylor’s theorem, 79 ;
to theory of groups, 80,86 ; to genera-
tion of invariants, 102; to strain,
181 ; to calculus of variations, 192;
to curvature, 215; V2, 75, 220, 227 ;
V-1 and V-2, 218; Gaussian, 104;
D, analogue of V for projective
geometry, 296.

Opposite of vector, 1.

Optics, examples from, reflection, 193
refraction, 22; aberration, 83;
astronomical refraction, 85, 175;
bright curves, 87; rotating mirror,
130 ; characteristic surfaces in, 228 ;
electro-magnetic theory of, 256.

Orbit, 186 ; instantaneous, 188.

Order of surface, 101 ; of curve, 290 ;
of multiple points on Jacobian, 298.

Origin, variable, 157.

Orthogonal spheres, 51, 52, 54; con-
focals, 121, 123, 125 ; surfaces, 227.
Oscillation of particle, 185; of rigid

body, 207.

Osculating plane, 132, 267, 296 ; circle,
134, 136, 152; sphere, 136; quad-
rie, 144 ; helix, 152; curve of inter-
section of two surfaces, 296.

Parahola, 64, 267.

Paraboloid, condition that general
equation should represent, 117
related to constrained motion, 191

Parallax, 85.

Parallelepiped, volume of, 22 ; integra-
tion over faces of, 71.

Parameter, vector involving, 62, 64,
65 ; form of V suitable for, 74, 226 ;
parameter of distribution, 138.

Partial differentiation, 67, 229; frac-
tions involving linear functions, 122 ;
differential equations, 86, 148, 151,
153 ; involving V, 226.

Particle, dynamics of, chap. X1v., 184

Particles, system of, 194; four,
dynamically equivalent to rigid
body, 199.

Pascal hexagon, 121.

Pedal of quadric, 109 ; of three-system
of screws, 164.

Permanent screws, 209,

Permutation, cyelical, of quaternions
under 8, 16 ; cyclical, of linear func-
tions in product, 100; of symbols in
combinatorial fanction, 270,

Perpendicular, on line, 36; on plane,
36; to two lines, 40 ; line, to itself,
96; on tangent plane, 109; on
generator of hyperboloid, 116; on
axis of screw, 156; in astatics, 163 ;
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of three-system, 164 ; of cyclindroid,
166 ; in hyperspace, 303.

Perspective, 46, 278.

Perturbed orbit, 188.

Pfaff, 86.

Philosophical transactions, 101,263, 275.

Pitch, of raled surface, 138 ; of screw,
156 ; in astatics, 161 ; of three-system,
164; of two-system, 165; of finite
displacement, 169 ; of impulsive and
of instantaneous, 202.

Plane of quaternion, 13 ; straight line
and, chap. v., 35; polar, for sphere,
50; for quadric, 108; radical, 50;
inverse of, 53; cyclic, 113; osculat-
ing, 132; generating developable, 135;
of no virial, 157 ; central, in astatics,
160 ; of elastic symmetry, 245 ;
polarised wave in elastic solid, 247 ;
in dielectric, 257 ; projective symbol
for, 265 ; equation of, 266 ; united, of
linear transformation, 274; to qua-
dric, polar, 276.

Pliicker’s coordinates of a line repre-
sented by (s, 7), 40.

Poinsot, central axis, 156.

Point, stationary, 63, 83 ; of inflexion,
83; circular, 96, 126, 307 ; double,
on wave-surface, 248, 261 ; on
Jacobian, 298 ; apparent, 292 ; sym-
bol, 263 ¢t seq., 308 ; united, of linear
transformation, 274, 276.

Polar, harmonic, 46; plane of point
with respect to sphere, 50; to qua-
dric, 108, 276 ; line to quadric, 109;
developable, 136, 139 ; general theory
of, 296.

Polarised waves in elastic solid, 247 ; in
dielectrice, 258.

Pole, see Polar.

Poles, spherical harmonicreferred to its,
224,

Polhode, 198.

Polygon, inscribed to sphere, 55; in-
scription of, 56 ; loci related to vari-
able, 300.

Potential, operator V-2, 220; expres-
sion for, 223 ; surfaces, equi-, 227
velocity, due to vortices, 235.

Power of vector, 28, 69, 173 ; of quater-
nion, 29 of point with respect to
sphere, 49, 50.

Poynting flux of radiated energy, 253 ;
paraliel to ray-velocity, 257.

Principal, axes of section of quadric,
111; normal to curve, 134; carva-
ture, 143 ; axes of inertia, 197 ; screws,
209; circuit, 232.

Product, of two vectors defined, 8 ;
associative property of, 11 ; reciprocal
of, 12 ; of two quaternions, construe-
tion for, 14 ; conjugate of, 15 ;
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spherical representation of, 16, 31;
differential of, 68 ; of linear functions,
95, 100; of vectors in hyperspace,
303 ; Grassmann’s, 306.

Projection, of point on plane, 37; of
ellipse into circle, 83 ; of vectors, in-
variants relating to, 98 ; of curvature,
141.

Projective geometry, chap. xviL, 263 ;
in hyperspace, 308.

Propagation of disturbance, 255.

Proportional to three vectors, fourth, 31.

Pure strain, 177 ; converting general
wave-surface into Fresnel’s, 262.

Pyramid or system of three planes, ex-
amples on, 38; invariant relations
for, 98.

Quadratic equation satisfied by quater-
nion, 29 ; by special linear function,
95 ; quaternion function, 274.

Quadric surfaces, chap. Ix., 106; an-
harmonic generation of, 65; oscula-
ting surface, 144 ; pitch, 165 ; elonga-
tion, 181 ; general, in point symbols,
275 ; inscri%ed in developable, 279 ;
tangent-line developable for, 282 ;
invariants of, 288.

Quadrilateral, spherical, 34 ; complete,
46 ; inscribed to sphere, 56 ; common
to quadric and linear complex, 274.

Quadrimonial form, for quaternion, 13;
for linear ¢uaternion function, 272.

Quartic, Steiner’s, 164, 166 ; symbolic,
of linear quaternion function, 274.

Quaternion, as sum of scalar and vector,
9; as product of two vectors, 9; as
function of gquaternions, 12; as quo-
tient of vectors, 13 ; as operator, 14;
as power of vector, 28 ; anharmonic,
56 ; invariants of linear vector func-
tion, 97, 159, 212 ; moment of force,
157; as symbol of point, 263; of
plane, 265; function, linear, 272
et seq.

Quotient, of parallel vectors, 3; of
vectors, 13.

Radical plane of spheres, 50 ; axis, 51 ;
centre, 52, 53.

Radius of quadrie, 107, see Conjugate,
Curvature,

Rank of curve, 292.

Ratio, of vectors, 13 ; of torsion to cur-
vature, constant, 137.

Ray-velocity, 248, 257.

Rayleigh, Lord, 240.

Reaction, 194, 200, 236 ; of constraint,
189, 204.

Reality of roots of self-conjugate vector
function, 96; of principal screws,
209 ; of united points, 276,
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Reciprocal, of vector, 11; of product,
12; of quadric, 110 ; screws, 204 ; of
quadric, 276.

Reciprocity, for a surface, relations of,
204,

Reciprocation, quadric of, 266, 309.

Rectangular vectors, system of three
mutually, 10; relations connecting
two systems of, 33 ; axes of function,
96, 97; vectors transformed from,
98 ; norinals to confocals, 123; re-
lated to curve, 134 ; to surface, 146 ;
examples relating to, 173; in hyper-
space, 303.

Rectifying developable, 136, 139.

Reduced wrench, 205.

Reflection in plane mirror, 19; in
moving mirror, 130; of force for
brachistochrone, 193.

Refraction, 22; astronomical, 85, 175 ;
conical, 248, 260.

Regression, edge of, 136 ; see Develop-
able. .

Regular solids, rotations related to,
104

Relative, magnitudes and directions of
two vectors, 13 ; motion, 171.

Remainder of a series, 79.

Resolution of vector into components,
chap. 11, 23; of linear function,
96, 99; of strain, 178 ; of force, tan-
gential and normal, 185; of linear
quaternion function, 282,

Resultant of statical forces, 156.

Revolution, cone of, 45; cylinder of,
45 ; condition for quadric of, 114;
tangent cylinder of, 115; motion of
particle on, 190.

Rigid, see Body, Dynamics.

Root, of a quaternion, nth, 28 ; differ-
ential of square-, 77 ; of linear vec-
tor function, latent, 93 ; square-, 99 ;
linear function, symbolic, 2™, of
unity,103; linear quaternion function,
latent, of, 272, 276 ; square- of, 282.

Rotation, convention respecting sense
of, 7; conical q.v., 18; forces, 160 ;.
finite displacement, 168 et seq. ;
strain, 177 et seq., 182; of elements,
212 ; in hyperspace, 307.

Roulette, 83, 84.

Royal Irish Academy, see Academy.

Ruled, hyperboloid q.v., 65, 116, 264,
270 ; surfaces, 128, 137 et seq. ; sur-
face, differential equation of, 149,
153.

Russell, Robert, 22, 61,

S symbol for scalar, 6, 19 ; differential
of 8q, 68.

Salmon, 114, see Geometry of Three.
Dimensions, Higher Plane Curves.



INDEX

Scalar, 3, 6; of product, 15; point,
263.

Screws, theory of, applied to, mation
of emanant, 137 ; statics, 156, 159,
163 ; displacements, 169 ; dynamics,
200, 204.

Segments, theorem of six, 46.

Self-conjugate, tetrahedron to sphere,
52, 276 ; vector function, 80, 96, 97 ;
tetrahedron of two quadrics, 277.

Seuse of rotation, 7.

Series, exponential, 28 ; Taylor’s 79;
of spherical harmonics, 223, 224.

Sextic curve, Jacobian, 293, 295.

Shaw, J. B., 263.

Shear, 178.

Shortest distance between lines, 40,
138, 154.

Similitude, direct and inverse, 14.

Six, coordinates of line (o, 7), 40; seg-
ments, 46 ; constants of self-con-
jugate function, 96; screws, 166;
co-reciprocal, 206.

Sixteen, constants in linear quater-
nion function, 272 ; square roots of
linear quaternion function, 282.

Solenocidal distribution of vectors, 234.

Solid, harmonic, 70, 76, 222 et seq. ;
elastic, 222, 239, 242 ¢¢ seq. ; mov-
ing in fluid, 241.

Solution of equations, involving linear
function, 92, 117 ; involving V, 218.
Sphere, chap. vi., 49; inversion of,
52 ; through four points, 53, 55, 58 ;
touching four planes, 54 ; and poly-
gon, 55, 56; solid, 59; generating
ellipsoid, 115; osculating, 136 ; en-
velope of, 151 ; surface generated by,

155 ; of reciprocation, unit, 266.

Spherical, trigonometry, chap. 1v., 29;
excess, 33 ; harmonics, 70, 76, 222 ;
curvature, 136; astronomy, exam-
ples, 174.

Sphero-conie, 118.

Spin-vector, 96, 97 ; of ¥, 97 ; in strain,

- 181, 182 ; of element, 212.

Spiral, logarithmic, 82.

Square-root of quaternion, differential
of, 77; of linear function, 99, 112,
124, 157 ; of linear quaternion func-
tion, 282.

Standard form of V, 75; of two linear
functions, 100 ; of screw-system, 164 ;
of quadric and linear complex, 278.

Statics, chap. x1., 156.

Steiner’s quartic, 164, 166.

Stokes’s theorem, 215.

Storage of energy, elastic solid, 243 ;
electric and magnetic, 252.

Strain, chap. x111., 177, 212, 238 ; stress
in terms of, 243.

Strength of tube, 233, 235.
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Stress, 237 et seq. ; in viscous fluid, 238 ;
in isotropic solid, 239 ; in terms of
strain, 243 ; in electro-magnetic field,.
255.

Striction, line of, 138 ; of quadric, 140..

Subtraction of vector, 2.

Sum of vectors, 2 ; of scalar and vector,.
9; of quaternions, 9; of weighted
points, 264 ; of area vectors in hyper-

. space, 306.

Supplemental triangles, 29 ; related to-
axes of function and conjugate, 94 ;
to propagation of light, 258.

Surface, in terms of parameters, 64 ;
quadric, chap. 1x., 106 ; non-central,.
117; of centres, 125; ruled, 137 ;:
curvature of, 141 ; generated by circle,
154 ; equilibrium of chain on, 167 ;
motion of particle on, 189; of dis-
continuity, 216 ; wave-, 248, 261 ; of
centres, generalized, 287 ; general,
293.

Surfaces, families of, 148 ; equipotential,.
227 ; characteristic, in optics, 228.
Symbel, 19, V, 70, 211; see Operator ;
(u, \) for screw, 163; 75 and &7 de-

fined, 229 ; point-, 263, 308.

Symbeolic, multiplication table, S, V, K,
T, U, 19; vector, V, 75; form of
Taylor’s theorem, 79-; cubic of linear-
function, 93, 100 ; case of depressed,
95 ; quartic of linear quaternion
function, 274.

Symmetry, elastic, 245.

T symbol for tensor, 4, 12, 19; differ-
ential of Tq, 68; development of
T(p+q), 85.

Tait, P. G., referred to, 7, 20, 33, 99,
163; 192, 211, 214, 218.

Tangent, to sphere, 49; curve, 63;
surface, 65 ; gquadrie, 108 ; confocal,
124 ; generalized confocals, 280 ; line
developable of two quadrics, 282;.
conjugate, 295; meeting surface in
four consecutive points, 298.

Tangential equation of quadrie, 110 ;.
and normal components of force, 185,
189; transformation, 273; equation
of quadric and linear complex, 276.

Taylor’s series, 79.

Telescope, examples on composition of
rotations, 175.

Tensor of vector, 4; quaternion, 12;.
biquaternion, 20; of sum, develop-
ment of, 85.

Tetrahedra, in perspective, 46 ; corre-
sponding vertices of, joined by gen-
erators of hyperboloid, 103 ; recip-
rocal, of united points of linear
transformation and its conjugate,.
274.
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Tetrahedral, coordinates,
complex, 302.

Tetrahedron, formulae relating to, 423
regular, 43, 104; anharmonic rela-
tions of point and, 46; self-conjugate
to sphere, 52; and sphere, 53 ; forces
on edges of, 158 ; of reference, 268 ;
self-conjugate to two quadrics, 277 ;
invariants relating to, 288; loci re-
lating to variable, 300.

‘Thomson and Tait, 200).

Three-bar motion, 60, 85; -system of
serews, 164, 205; plane polarised
waves in solid, 248.

‘Tore, 59.

Torsal generator, 140.

Torse, see Developable.

Torsion, 132, 134.

Total curvature, 148.

Transformation, effected by linear vec-
tor function, 89; by self-conjugate
function, 97; Cremona, 101; of screws,
208 ; general linear, 272, et seq. ; ex-
amples of, 285 ; invariants of, 288.

“Transversals of lines, 103.

Triangle, and point, harmonic proper-
ties, 45; and conic, 48.

‘Trigonometry, formulae for plane, 25 ;
de Moivre’s theorem, 27 ; spherical,
29,

Trilinear function, 243,

Trinomial form for linear function, 89 ;
for pair of functions, 100.

‘Tube, motion of particle in rotating,
191 ; in fluid motion, 233, 235.

‘Twist of curve, vector, 133 ; -velocity,
170, 171, 201.

Twisted, cubic g.»., 93, 104, 109, 123,
133, 172, 267, 278, 285, 293.

‘Two linear functions, 100; reduction
to, forces, 158; angular velocities,

172.

q.v., 268;

U, symbol for versor, 4, 13, 19 ; differ-
erential of Ug, 68; development of
Ulp+gq), 85.

Unmbilical generator, 125 ; generalized,
279, 286.

Unicursal curve, 152,

Unit, of length, 4; vector denoted by
Ua, 4; vectors, system of mutually
(g.v.) rectangular, 10, 96, 98, 134, 146;
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point of anharmonic coordinates, 44 ;
weight, points of, 263 ; sphere of re-
ciprocation, 266; vectors in hyper-
space, 303.

United, screws, 209 ; points of trans-
formation, 274, 276.

V, symbol for vector, 7, 19; differ-
ential of V¢, 68.

Variable origin, 157.

Variations, calenlus of, 192 ; of inte-
grals, 231, 233.

Vector, as directed right line, 1; as
operator, 14; arc, 17; area, 23;
of curve, 62; of surface, 64 ; fuunc-
tion, linear, 88 ; spin-, 96 ; equation
of confocals, 124 ; emanant, 131 ; as
difference of two points, 263; as
point at infinity, 263; area, in
hyperspace, 303. .
See Linear vector function, etc.

Vectorial algebra, 11.

Velocities, virtual, 157, 254.

Velocity, 63 ; hodograph, 83, 187, 189 ;
of emanant, 138; twist-, 170, 201;
relative, 171 ; of particle, 184 e¢ seq.;
areal, 186, 188; of element of
medium, angular, 212; potential,
due to vortex rings, 235; wave-,
247, 257 ; ray-, 248, 257.

Versor of vector, 4, 14 ; of quaternion,
13, 16.

Versors, coplanar, chap. 1v., 27.

Vibration of particle, 185.

Virial, 157.

Virtual, velocities, 157, 254 ;
cient of two screws, 206.

Viscous fluid, 238, 240.

Volume of parallelepiped, 23 ; of tetra-
hedron, 265, 269 ; directed, 304.

Vortex motion, 235, 238.

co-effi-

Wave-surface, 163, 248, 261 ; velocity,
247, 257.

Waves, propagation of disturbance by,
255.

Weierstrass, 199.

Wrench, in statics,
pulsive, 201, 204;
reduced, 205.

156, 163; im-
evoked, 204;

Zero, square-root of, 29.
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